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Abstract

Computer Science researchers have long sought ways to
apply the fruits of their labors to education. From the Logo
turtles to the latest Cognitive Tutors, the allure of computers
that will understand and help humans learn and grow has been
a constant thread in Artificial Intelligence research. Now, ad-
vances in robotics and our understanding of Human-Robot
Interaction make it feasible to develop physically-present
robots that are capable of presenting educational material in
an engaging manner, adapting online to sensory information
from individual students, and building sophisticated, person-
alized models of a student’s mastery over complex educa-
tional domains.

In this paper, we discuss how using physical robots as plat-
forms for artificially intelligent tutors enables an expanded
space of possible educational interactions. We also describe a
work-in-progress to (1) extend previous work in personalized
user models for robotic tutoring and (2) further explore the
differences between interaction with physical robots and on-
screen agents. Specifically, we are examining how embedding
an tutoring interaction inside a story, game, or activity with an
agent may differentially affect learning gains and engagement
in interactions with physical robots and screen-based agents.

Introduction
Widespread, robust robotic technology is still in its infancy.
As a result, software-based Intelligent Tutoring Systems
(ITSs) have had greater success in promoting learning gains
in real classroom environments than physical robots, thus
far. One of the most promising techniques from the ITS lit-
erature is Bayesian Knowledge Tracing (BKT) in which dif-
ferent educational skills or “Knowledge Components” are
encoded as nodes in a Bayesian Network (Desmarais and
Baker 2012).

However, there is a growing body of evidence that sug-
gests that physically-present robotic tutors can be more ef-
fective and engaging than screen-only systems, if certain
conditions are met. ITS research provides a core foundation
of Artificial Intelligence techniques to build upon, but addi-
tional work is required to adapt such techniques to handle
the different actions, expectations, and interaction dynamics
that come with physical robot tutors.
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Physically Present Robot Tutors
Although using a screen-based avatar for educational tutor-
ing provides advantages in cost and scalability, there are still
myriad reasons why a physically present robot tutor may
ultimately be a more effective platform for Artificial In-
telligence tutoring. Much work in HRI has been dedicated
to investigating the effects of robotic presence compared
to screen-based representations. We summarize a few key
works and their results here:

(1) Physical robots increase task compliance. In a 2011
study, students were more likely to comply with a physical
robot’s request than a screen-based representation’s request,
even if the task was odd or uncomfortable (Bainbridge et al.
2011).

(2) Physical robots are more able to maintain effective
long-term relationships. In a 6 week study of robots in the
home, participants with physical robot partners recorded
caloric intake and exercise habits for twice as long as those
who used the same software or a paper equivalent (Kidd and
Breazeal 2008).

(3) Physical robots produce greater learning gains. In a
2012 study, students played several rounds of a puzzle game.
and received lessons on techniques for solving the puzzle.
Those who got lessons from a physical robot completed the
final puzzles significantly faster and improved their solving
time significantly more than those who received identical
lessons from an on-screen video of the same robot (Leyzberg
et al. 2012).

Experimentally, physically present robots have been
shown to have several advantages over screen-based agents.
But the nature of these effects is not fully understood, nor
do we have a good theory of how to leverage such effects
to design more effective robot tutors. The next section de-
scribes an ongoing project to improve a robot tutor’s abil-
ity to model more complex domains and to identify specific
changes in the dynamics of tutoring interactions with physi-
cally present robots.

Framing Educational Interactions with a
Physically Present Robot Tutor

We describe here a work in progress to extend the state-of-
the-art in adaptive robot tutoring. This work uses BKT to
model an educational domain and track a student’s progress



through the curriculum. In (Leyzberg et al. 2012) and
(Leyzberg, Spaulding, and Scassellati 2014), a robot tutor
built a model of students’ knowledge of strategies for solv-
ing a puzzle game, then offered personalized lessons tar-
geted at improving solving performance. These works iso-
lated the effects of personalization and embodiment and
showed that both lead to increased learning gains in a tu-
toring interaction. Our research looks to enhance the scope
of that work by (1) improving the model to handle hierarchi-
cal, inter-dependent domains of knowledge (previous work
assumed that skills were independent and could be learned
in any order) and (2) exploring more subtle differences be-
tween physical robots and screen-based agents in tutoring
interactions.

Computational Model: Bayesian Knowledge
Tracing in a Language Domain
We plan to use Bayesian Knowledge Tracing to model stu-
dents’ understanding of a subset of basic english grammar
rules.

Each node in the network represents a random variable,
the probability that a student understands the correspond-
ing Knowledge Component (in this case, a specific grammar
rule or concept), conditioned on its parent nodes. Knowledge
Component nodes are not themselves directly observable,
but instead update their conditional probabilities in response
to evidence provided by the user in the form of right or
wrong answers (represented as observable “question” nodes,
connected to the Knowledge Components each question de-
pends on). The models used in BKT are therefore a special
case of Hidden Markov Models, where each component can
be in one of two hidden states, “learned” or “not learned”
(Yudelson, Koedinger, and Gordon 2013).

In this domain, correct demonstrations depend on mas-
tery of both “higher-level” concepts and specific rules. For
instance, understanding how to properly construct the en-
glish sentence “The dogs were running” requires (1) using
the correct number of the noun, (2) understanding how to
use the past tense and (3) understanding how to conjugate
verbs to the gerund form. Some observable skills are in-
dependent (e.g., ‘dog’ to ‘dogs’ requires understanding of
number only and the general rule of appending the “-s” suf-
fix) while other observables may map to multiple skills with
hierarchical structures or inter-dependencies. For instance,
properly conjugating “is” to “were” requires general under-
standing of both tense and number, as well as the specific
rule for the past plural form of “is”).

In total, we expect to track and model students’ profi-
ciency with 16 different base-level skills (specific conjuga-
tion/declension rules) and 3 meta-concepts (number, tense,
and gerund)

User Study: Framing Educational Interactions
with Physical Robots and Screen Agents
In addition to implementing a BKT model on a physical
robot tutor, we are also investigating how to design better
tutoring interactions with physical robots.

New interaction modalities are made available with a

physical robot, thus the space of possible types of interac-
tions correspondingly increases. While the underlying set of
skills to teach remains fixed, the different contexts in which
the tutoring interaction can take place expands. For instance,
a physical robot trying to teach students about colors can
point to different colors, physically manipulate objects of
different colors, and play games that involve mixing differ-
ent colors together. A screen-based agent is capable of doing
the same kinds of actions, but the context would necessarily
also take place on a screen (e.g., virtually mixing colors or
highlighting various colors on a tablet screen).

While previous ITS research has often focused on tra-
ditional quiz or “workbook” style interactions, the use of
agents in tutoring facilitates embedding the educational in-
teraction in a different context (e.g., a story or game). What
has not been investigated, however, is whether such an em-
bedding is equally effective with software-based agents or
physical robots.

Thus, we are planning a 2x2 experiment to examine the
effect that this embedding has on screen-based and physical-
robot tutoring interactions with children (embedded tutoring
interaction x physical robot). We hypothesize that

(1) Users who experience the tutoring interaction embed-
ded in a story domain will exhibit greater willingness to en-
gage with the system, compared to those who experience the
interaction in a traditional “quiz-style” interaction.

(2) Users who experience the tutoring interaction embed-
ded in a story domain will exhibit greater learning gains,
compared to those who experience the interaction in a tradi-
tional “quiz-style” interaction.

(3) Users who experience the tutoring interaction embed-
ded in a story domain with a physical robot will exhibit
greater willingness to engage with the system, compared to
those who experience the story domain with a screen-based
agent.

(4) Users who experience the tutoring interaction embed-
ded in a story domain with a physical robot will exhibit
greater learning gains, compared to those who experience
the story domain with a screen-based agent.

Conclusion

Developing socially assistive robots capable of sustaining
engaging, educational interactions requires more than just
applying ITS algorithms to a new platform. There is sig-
nificant evidence that humans adopt different attitudes and
behaviors towards physical robots, which provides an op-
portunity to design new forms of engaging, educational me-
dia, but also suggests additional challenges to overcome. For
instance, humans may expect a robot to respond to natu-
ral forms of communication, such as deictic gestures and
natural language. If the robot cannot perform up to the hu-
man’s expectations, the allure of the interaction may be lost
(Breazeal 2004). By investigating the different strengths and
weaknesses of using physical robots alongside, we hope
to pair HRI understanding with A.I. techniques to develop
more effective artificially intelligent tutors.
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