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ABSTRACT

To help facilitate play and learning, game-based educational activi-
ties often feature a computational agent as a co-player. Personal-
izing this agent’s behavior to the student player is an active area
of research, and prior work has demonstrated the benefits of per-
sonalized educational interaction across a variety of domains. A
critical research challenge for personalized educational agents is
real-time student modeling. Most student models are designed for
and trained on only a single task, which limits the variety, flexibility,
and efficiency of student player model learning.

In this paper we present a research project applying transfer
learning methods to student player models over different educa-
tional tasks, studying the effects of an algorithmic “multi-task per-
sonalization” approach on the accuracy and data efficiency of stu-
dent model learning. We describe a unified robotic game system for
studying multi-task personalization over two different educational
games, each emphasizing early language and literacy skills such as
rhyming and spelling. We present a flexible Gaussian Process-based
approach for rapidly learning student models from interactive play
in each game, and a method for transferring each game’s learned
student model to the other via a novel instance-weighting protocol
based on task similarity. We present results from a simulation-based
investigation of the impact of multi-task personalization, establish-
ing the core viability and benefits of transferrable student models
and outlining new questions for future in-person research.
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1 INTRODUCTION

Early language and literacy skills are important foundations for
learning, representative of the multifaceted human abilities of in-
creasing importance in the 21st century. So-called ‘Serious Games’
are used in many scenarios that require interactive practice or train-
ing, and these games often feature computational agents that help
facilitate and personalize the gameplay to make practice more ef-
ficient and effective [18]. Some games feature embodied “social”
robots that co-occupy physical game space with human players.
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Compared to virtual counterparts, physically embodied robots have
been shown to improve learning and engagement across a wide
variety of tasks [6]. These benefits broadly overlap with metrics
of ‘resonance’ [15] in learning games, suggesting that combining
embodied human-robot interaction (HRI) with the context of a se-
rious game may make for more effective learning interactions than
either individual paradigm.

Following these insights, researchers are studying how social
robots can be used to promote childhood education by engaging
with, understanding, and adapting to students to provide scalable,
personalized, interactive digital learning systems. Prior research has
shown that, like physical embodiment, modeling a student player’s
knowledge and adapting the game to their level leads to greater
learning and engagement [21]. Thus far, these modeling efforts
have focused on implementations within individual games; student
models remain largely ad-hoc, and almost always focused on a
single educational activity, i.e., a student model or policy trained
separately per game ‘task’.

Research on collaborative HRI for physical tasks highlights the
effectiveness of multi-task and transfer learning methods [19], [8],
yet single-task personalization remains the current standard for
adaptive educational games. We hypothesize that designing trans-
ferrable student player models (i.e., a model designed for and trained
on one game task, sharing data and inference with a model designed
for a separate game task) can be an effective paradigm for increased
data efficiency and improved final quality of learned models, as
well as support a greater variety and scope of educational gameplay
over long-term interactions. To investigate these research ques-
tions, we have developed an autonomous social robot system with
an associated suite of interactive educational games designed to
help young students practice early language/literacy activities. In
each game, the robot and student engage each other in interactive
play that is designed to assess, teach, or reinforce a particular early
language or literacy skill.

In this paper we present formal models and transfer approaches
between two such games: RhymeRacer, an interactive digital
rhyming game in which players group words with similar rhyme
endings, andWordBuilder, in which players work together to
create words out of letter blocks. Both games are designed to sup-
port a human student and a robotic peer as the players, and facilitate
adaptive, mixed-initiative interaction between them to help young
children learn and practice early alphabetic principles regarding let-
ters, sounds, and spelling. As gameplay unfolds, the robotic player
learns a personalized model of students’ knowledge from gameplay.

Our contributions in this paper include details of each game
and the associated social robot system; formal descriptions of their
associated interactive player models and a computational approach
for transferring player models between games; and results from a



simulation experiment that establish the theoretical potential of
transferrable, multi-task student models.

2 RELATEDWORK

Our work draws from two distinct but overlapping areas of re-
search: Human-Robot Interaction, specifically that which focuses
on educational game-based interaction, and research on Serious
Games and AI.

2.1 Social robots as adaptive language learning

companions for children

Social robots’ ability to interactively engage students has received
increasing attention in the past decade [4]. Prior work has shown
how social robots can significantly increase children’s engagement
and language/literacy skills, from vocabulary acquisition [25] to
word decoding [28] and complex narrative generation [21]. In many
of these projects, robots model students’ knowledge and adapt
the educational content and robot behaviors to promote learning
and engagement. These models can yield actionable insights into
student’s current state of knowledge, estimates of interpretable
parameters like rate of learning, and information about students’
learning styles and interaction preferences such as whether a stu-
dent is motivated by competition or collaboration or how best to
encourage students after a setback. Field research studies ([31],
[10]), conducted ‘in-the-wild’ over several weeks at local schools
have shown that personalized social robot systems can effectively
improve student learning over long-term interactions.

Despite these recent advances, designing human-robot interac-
tions that maintain student engagement over the long-term remains
a challenge, in part because the basic interaction structure typi-
cally remains fixed over time. The personalized models improve
as additional interaction data are incorporated, but because the
models are designed for a single interaction task, the student ex-
periences little variety in the main activity over the course of a
long-term interaction. For example, students engaging in a vocab-
ulary learning interaction with a robot over several weeks would
typically follow the same pattern of hearing a lesson or playing
a few rounds of a touchscreen-based game with the robot, with
the main difference being new content selected by an increasingly
personalized model incorporating the prior week’s data. After the
first few interactions, children’s engagement tends to drop off, a
phenomenon well-known among HRI researchers as the “novelty
effect" [3].

Long-term interactions are one of the few ways to effectively
obtain enough data for deeply personalized models, and variety in
interaction activities is crucial to maintaining engagement and miti-
gating the novelty effect over repeated interactions. If student mod-
els were designed to transfer across tasks, long-term interactions
would benefit from more consistently high student engagement
and larger and more varied player data for model personalization.

2.2 Player modeling in interactive games

Adaptive player modeling is an umbrella term for techniques using
player data to make inferences that affect subsequent gameplay
[32]. Sometimes called ‘Experience Management’ [30], adaptive

player modeling is the bedrock of research on developing sophis-
ticated interactive agents. Zhu & Ontañón highlight a number of
research applications for Experience Management techniques, most
relatedly, “interactive learning environments, including intelligent
tutoring systems, pedagogical agents, and cognitive science/AI-
based learning aids" [34].

Real-world implementations of adaptive player modeling sys-
tems face the technical problem of “cold start” learning. Analogous
to the difficulty of starting a motor after it has fallen into disuse,
“cold start” learning refers to the challenge of training an adaptive
player model from real-time gameplay data. Personalized models
require gameplay data to learn, but data-poor model instances per-
form poorly, so players choose not to interact with the system,
thereby depriving it of future data from which to learn [17]. Trans-
ferable player models could help mitigate this problem by providing
an initial baseline of data-driven model performance, derived from
data collected during a prior ‘source’ task.

Recently, research applying multi-task learning to educational
games has used data from a group of students to train a predictive
model of student performance, treating each question of a game
as a separate ‘task’ to learn [9]. In our work, each task is an entire
game (comprised of multiple questions), and the task models are
trained and transferred sequentially on personalized data, rather
than post-hoc on group data.

Leading researchers of interactive educational games recognize
both the challenge and the potential of personalized student player
models designed for multi-task transfer. In a recent summary of the
state-of-the-art of Learning Analytics, Ryan Baker outlined a series
of challenges for the future of the field. The very first challenge
on the list is the “learning system wall": the inability of student
learning models to transfer outside of the environment in which
they are trained [1]. Our work represents one of the first concrete
implementations of such a system.

3 TRANSFERRABLE PLAYER MODELS

While personalized social robot systems have been shown to im-
prove student learning over long-term interactions in pre-registered,
large-sample trials [31], most such systems are designed around a
single task and corresponding student model. Learning is a lifelong,
multifaceted process, yet student observations in one task are not
used to update models and policies of other relevant tasks. Machine
learning systems are said to exhibit ‘catastrophic forgetting’ when
they perform poorly on previously learned tasks after exposure
to data from a new task. Yet despite substantial recent progress
in meta- and multi-task learning in Deep Reinforcement Learning
settings [7] [33], when students in educational interactions switch
games (or even tasks within the same game), the underlying models
are not designed to ‘remember’ student data from previous tasks at
all!

To overcome this limitation, we propose a “multi-task personal-
ization” transfer learning approach in which students play multiple
distinct games, with interaction data and inferred player models
transferred across games. We hypothesize three specific benefits
from multi-task personalization:

First, by integrating data from multiple activities into each game
interaction’s unique models, multi-task personalization may lead to



more efficient use of data. Data efficiency is particularly important
for applied research in real-world, personalized educational models,
as data collection opportunities for novel game designs with real
students tend to be scarce, compared to other application domains
(e.g. player telemetry from already popular games).

Second, by enabling variety in educational tasks without (cata-
strophic) loss of personalization, multi-task personalization may
help maintain higher levels of student engagement and mitigate
the novelty effect over a long-term interaction. Currently, the in-
ability of models to transfer or generalize over different interaction
types force researchers to rely on the same interaction (or subtle
variants) for several weeks, adding to the challenge of personalized
long-term interactions [14].

Finally, designing amulti-task personalization systemwithmulti-
ple distinct tasks may also prove beneficial to educators and domain
experts by increasing the variety of multimodal interaction data
that can be elicited, educational skills that can be taught, and per-
sonalized models that can be learned, leading to a more holistic
computational model of student players. Instead of a four-session
study to evaluate a student’s phonemic rhyme awareness, followed
by a separate four-session study to assess student’s alphabetic and
spelling skills, our system design connects both skills to give a more
complete picture of a student’s learning progress in shorter time.

3.1 Overview of Approach

Transfer learning [20] is a class of machine learningmethods involv-
ing a ‘source’ and ‘target’ task. Well-known sub-classes of transfer
learning problems (e.g., domain adaptation, multitask learning) are
defined based on the availability of data in source and target tasks,
as well the degree of similarity between source and target task
formulations.

In this paper, our source and target tasks are the Cognitive-
Models learned during each game, which represent estimates of a
student’s mastery of a literacy skill (e.g. rhyming/spelling). These
CognitiveModels take the form of a Gaussian Process (GP), de-
fined over a domain of 74 words called the Curriculum. The set
of words in the Curriculum is common to each of game tasks, but
the geometry of the ‘word space’ is unique to each task, formally
defined by a covariance kernel that is the primary driver of GP
inference. Each task’s covariance kernel computes how ‘close’ a
pair of words are to each other, and, therefore, how much an ob-
servation of skill mastery of a particular word affects the posterior
estimate of skill mastery of an unobserved word.

For example, in RhymeRacer, the primary literacy skill the game
is designed to assess and encourage is rhyming: an observation of
a student correctly identifying a rhyme for the word ‘FALL’ should
increase the model estimate that the student is likely to also be
able find a rhyme for the word ‘BALL’. This ‘closeness’ is reflected
in the design of the covariance kernel for RhymeRacer (see Sec.
4.1.2). Likewise, inWordBuilder, the primary literacy skill guiding
the game design is spelling. An observation of a student correctly
spelling the word ‘SNAKE’ should increase the model estimate that
the student is likely to be able to spell ‘SNAIL’.

Our approach for multi-task model transfer is to instance-weight
specific skill demonstrations of words, with the transfer weighting
determined by the similarity of that word’s use in the source and

target tasks. Informally, the covariance between a given word (e.g.
‘BALL’) and all other words defines what that word means within
the context of the specific task model. If, under two distinct (source
and target) task covariance kernels, ‘BALL’ has identical covari-
ance to all words in the Curriculum, then functionally, a positive
demonstration of ‘BALL’ under the source task conveys the same
information as a positive demonstration under the target task. To
compute the transfer weighting of a training instance (e.g. a demon-
stration of correctly rhyming ‘BALL’), we look at the difference in
the covariance between source and target tasks for ‘BALL’ and all
other words in the Curriculum. See Sec. 5 for greater detail on the
instance-weighting transfer algorithm.

4 PERSONALIZED LITERACY GAME SYSTEM

In this section we describe a playable system composed of two
games, called RhymeRacer and WordBuilder, designed for stu-
dent co-play with a physically embodied robot peer. Both games
were developed with the Unity game engine, and receive commands
and send input data back to a backend controller via ROS [23]. Both
games were designed for children in early stages of literacy learn-
ing (approx. age 5-7). In addition to typical playtesting validation,
we consulted experts in early childhood learning and children’s
media throughout the design process for specific content recom-
mendations and to ensure overall fidelity to goals and practices of
children’s media for language/literacy learning. This paper’s pri-
mary focus is on transfer learning of each game’sCognitiveModel,
therefore we focus our description of each game on details neces-
sary to understand the modeling and transfer algorithms, rather
than in-depth detail of each game’s adaptive behavior.

The games are designed to complement each other, and feature
different mechanics, scoring systems, and ‘winning conditions’.
RhymeRacer was designed to be more competitive, WordBuilder
was designed to be collaborative. RhymeRacer’s primary educa-
tional focus is on phonemic rhyme identification, WordBuilder em-
phasizes the alphabetic skills of spelling to reinforce the mapping
between phonemes and letter combinations.

Within each game, the robotic agent presents itself as a peer
and plays the game alongside the student. From student’s game-
play data, the system infers a personalized CognitiveModel of
the student player (an estimate of their current state of curric-
ular knowledge, based on prior game actions). Both games use
the same Curriculum of words, which forms the domain of the
CognitiveModel and thus the basis for the transfer learning ap-
proach. The Curriculum is a list of 74 words hand-picked by ex-
perts in early-childhood education specifically for use in these
games. They feature words which are generally phonetically, ortho-
graphically, and semantically (e.g. animals, foods, household items)
age-appropriate, and a collection of words forming distinct rhyme
groups.

4.1 RhymeRacer: A Game for Practicing

Phonological Awareness

4.1.1 GameplayOverview. RhymeRacer is similar to theWordRacer
game (introduced in [27] and extended in [26]), a fast-paced, com-
petitive, 2-player game that proceeds through a series of discrete
game rounds.



Figure 1: A round of RhymeRacer. FALL is the Target word,

Prompt words are RAIN, COAT, PAIL, and BALL.

At the start of each round, the tablet shows a picture of the
‘Target’ word in the center of the screen (see Figure 1), surrounded
by four ‘Prompt’ word graphics, smaller pictures of other words
from the Curriculum, exactly one of which rhymes with the Target
word. The tablet also gives a recorded audio prompt, saying “What
rhymes with [Target Word]?” as the images are displayed. The first
player to correctly tap on the rhyming Prompt word graphic is
awarded points, after which the graphics clear and the next round
begins.

The robot player is presented to the human player as a co-playing
peer, and its outward behavior affirms this framing: the robot player
selects Prompt word graphics just as the human player does, gives
a mixture of correct and incorrect responses, and responds with
appropriate socio-emotional behaviors to in-game events (e.g., acts
excited when scoring points, disappointed when incorrect, encour-
aging when human player scores points).

4.1.2 Cognitive Model. RhymeRacer uses a Gaussian Process re-
gression model in a domain space of words from the Curriculum,
essentially identical to the model described in [27]. A Gaussian
Process (GP) is a flexible, probabilistic model that is well-suited for
regression modeling in data-sparse applications in which domain
knowledge can be encoded as a covariance function. Technically, a
Gaussian Process is a distribution over possible functions, where
the distribution of function evaluations at a finite set of points is
jointly Gaussian.

In other words, a GP is a probabilistic inference model that
makes Gaussian predictions over a set of output points, based on
a set of observed data points {xi ,yi }. In the word-space domain,
each input data point is a word from the Curriculum and a score
from (−1, 1) representing the student’s demonstrated level of skill
mastery applied to that word during gameplay. For each point in an
output set, the GP model computes a posterior mean and posterior
variance, {µi ,σi }, which, in our application, represent the posterior
estimate that the student can apply the modeled skill to the output
word (e.g. correctly identify the rhyming word for ‘FALL’) and the
uncertainty surrounding that estimate.

The GP posterior is largely driven by the covariance function
or kernel of the GP, which defines a pairwise distance between
domain points, i.e., how much each labelled point from the input
set contributes to posterior inference at each other output point.

Once the domain and covariance kernel are defined, GP inference
is fairly straightforward [24]. The covariance kernel, therefore,
defines the ‘task’ modeled by the GP output predictions.

For RhymeRacer, the domain of the GP model is the set of words
from the Curriculum, and the covariance is a modified form of the
kernel used in [27]: the normalized cosine distance between any
two words’ GloVe semantic word vectors [22], plus an additional
term that increases two words covariance if they share a rhyme
ending (e.g. “-ALL" for FALL and BALL).

Covr r ({wi ,w j }) = ν [α + cos(GloVe(wi ),GloVe(w j )], (1)

where α = 1.0 iffwi andw j share a rhyme ending, and 0 otherwise.
ν is a normalization constant.

A GP is a regression model, and can therefore handle a contin-
uous label space, but the design of the RhymeRacer game input
gives only a discrete, binary signal: whether the student selected
the correct rhyming word or not. To determine the final model
observation value (yi ) for a round Target word (xi ), we apply a
timing adjustment, p(td ), to correct for the possibility of guessing.
The timing adjustment is applied as a discrete, step-wise penalty
of .1 based on the number of seconds it takes to give an answer,
i.e, p(td ) = 0.1 · td where td is the time of delay in seconds. For
example, if a student selects the correct Prompt word for a round
within the first second, they receive no penalty, but if they selected
the correct Prompt word after 5 seconds, they receive a penalty of
p(td ) = 0.5.

4.2 WordBuilder: A Constructionist Game for

Practicing Early Alphabetic Skills

WordBuilder is a brand-new game developed to complementRhymeRacer.
The two games use a similar design process and share some game
assets to maintain a consistent visual style, most notably the Tar-
get word graphics that depict the words from the Curriculum. To
facilitate model transfer, the overall technical architecture and, no-
tably, the word-based Gaussian Process modeling paradigm are also
common to both games. However, the individual implementations
of each model, like the tasks each game is designed to assess and
reinforce, differ considerably.

WordBuilder serves as a counterpart to RhymeRacer in two
main ways: First, WordBuilder is designed to help students prac-
tice spelling (an alphabetic skill), rather than rhyming (a phonetic
skill), to broaden the curricular coverage of the unified system. Sec-
ond,WordBuilder features collaborative, rather than competitive,
gameplay; the robot and child work together to solve a spelling
puzzle posed by the tablet, as opposed to the ‘first-to-answer-wins’
style of RhymeRacer.

4.2.1 Game Play Overview. Much like RhymeRacer, gameplay
proceeds through a discrete series of rounds, each associated with
a round ‘Target’ word whose graphic is displayed at the top of the
screen. The letters which make up the Target word are randomly
placed into letter blocks surrounding a set of (initially empty) letter
slots in the center. For example, if the round Target word is SNAKE,
the tablet shows an image of a snake and the letters S-N-A-K-E in
letter blocks in a random order and location, surrounding 5 empty
letter slots (see Figure 2). Within each round, the student and the



Figure 2: Screencap of a single ‘round’ of WordBuilder.

robot can each freely place letter blocks into the center squares to
spell words; the round ends when the submit button is pressed, and
the human-robot team scores points if the team placed all the letters
of the Target word into the correct letter slots. The completed word
is then displayed on the right side of the screen, and the next round
starts.

4.2.2 Cognitive Model. By design, to facilitate multi-task trans-
fer, WordBuilder uses the same Gaussian Process model struc-
ture as RhymeRacer, but with a different covariance kernel, better
suited to modeling spelling ability. The covariance kernel for the
WordBuilder GP is based on a weighted Levenshtein (minimum
edit) distance between two words:

Covwb ({wi ,w j }) = ν [Levenshtein(wi ,w j )], (2)

where ν is a normalization constant. Word distance is defined as
the minimum edit distance between two words, normalized to the
range {0, 1}.

When the student correctly spells the target word, that is consid-
ered a positive model observation. The final model observation is
again adjusted based on the amount of time a player spends spelling
each word. If the student cannot spell the target word after an upper
time limit is exceeded, the robot spells the complete word and the
model updates with an observation score of -1.

5 MODEL TRANSFER APPROACH

Each game stands on its own as an example of an adaptive player
modeling system, but our primary goal in this paper is to advance an
approach for studentmodel transfer. Each game’sCognitiveModel
takes the form of a Gaussian Process defined over the words in
the Curriculum, with the task-dependent ‘word-space’ geometry
defined by the covariance kernel. Let us assume one source game
is played without any prior personalization, and several rounds of
model observations are collected and used to compute the source
task GP posterior. How can we use this data to help the target task
model learn more quickly or proficiently?

The most basic approach would be to simply use the source task
data as-is, alongside any new target task data, using the target
task covariance kernel to compute the posterior. This might be
better than nothing, as proficiency in one task is likely to positively
correlate with proficiency in another. But this approach fails to
consider that the two tasks differ, predictably and quantifiably.

Instead, we propose an instance-weighting approach, whereby
we include source task data in the target task training set, but weight
each transferred data point differently based on the similarity of the
source and target task with respect to that data point. The source
and target tasks are defined by their respective GP covariance
functions, thus our re-weighting similarity metric is based on the
differences in source/target covariance for a particular domain point
(i.e. a single word).

The covariance function of RhymeRacer encodes the domain
knowledge that words which share a rhyme ending are ‘closer’ to
each other (i.e. if you can correctly identify the rhyming word for
DOG, you aremore likely to be able to identify the rhymingword for
FROG) [16]. Likewise, the covariance function of WordBuilder
encodes the domain knowledge that words which share similar
letters are ‘closer’ to each other (i.e. if you can correctly spell CAT,
you are more likely to be able to spell CAR). When computing
the instance weight of ‘(DOG, .85)’, if knowing DOG impacts the
inference of other words in the source task in a way similar to
how knowing DOG impacts inference in the target task, then DOG
should be weighted roughly equally (i.e. close to 1) in the target task.
More concisely, the greater the source-target similarity in word-
space geometry around a domain point, the higher the transfer
weighting of any source task data at that domain point.

To formalize this intuition, we take the average (over all words
in the curriculum) difference between source and target task covari-
ances of the instance word and each other word, giving a measure
of how similarly instance word data impacts inference overall in
the source and target tasks. Transfer weight, λi , of a source task
data instance {xi ,yi } is determined by the average difference in
source and target task covariance at that point, across all wordsw
in the Curriculum,W :

λi =

∑
w ∈W 1 − ||Covs (xi ,w) −Covt (xi ,w)| |

|W |
. (3)

Source data instances with identical target task covariances
would get a weight of 1 (indicating the data instance plays an
identical role in the target task), whereas data instances with highly
dissimilar target task covariances (indicating a very different im-
pact on inference) get a weight of 0 (i.e. removing that instance
from the target data entirely). In this paper, data instances are only
transferred and reweighted from their originating source task to
the alternate target task. However, future research could explore
the effect of multiple transfers and reweightings of a single data
instance.

6 RESEARCH EXPERIMENTS AND IMPACT

In this section, we describe experimental evaluations of the effect
of transfer on student models, using simulation-based student data,
establishing theoretical footing for our “multi-task personalization”
transfer approach. We close by discussing the implications of these
findings for research in multi-task player modeling.

6.1 Simulated Student Data

In this paper we provide experimental simulation results to ground
our implementation of multi-task personalization. We derive our



Figure 3: An integrated social robot platform that supports

different game “tasks".

student performance data from a simulated student, SimStudent,
based on a minimal set of modeling assumptions.

Each SimStudent has an internal "true mastery" (mw ∈ [−1, 1])
for each word in the Curriculum, per game. The SimStudent’s
true mastery of a word in a game can be interpreted as the student’s
likelihood of correctly applying the literacy skill to the word (e.g.
identify "SNAIL" as the rhyme for "WHALE" or correctly spell
"SNAIL" with the letter blocks). The process for generating true
mastery values varies by game, and is used to simulate a student’s
gameplay actions during the game via a noisy sampling process.

Each SimStudent’s “performance data” for a word consists of a
binary ‘correctness’ variable corresponding to whether they suc-
cessfully applied the primary literacy skill of the game to the word
(e.g., selected the correct rhyme or correctly spelled the Target
word), plus a scalar ‘timing’ variable corresponding to the amount
of (simulated) time taken to answer. Each word-performance pair
(wordi , {correcti , timinдi }) constitutes a single ‘sample’.

6.1.1 Simulating True Mastery. Although each game supports the
practice of different fundamental literacy skills (rhyming and spelling),
both skills are indicators of a meta-linguistic skillset known as
phonological awareness. To generate the SimStudent’s true mas-
tery of each word in each game, we first generate a theoretical
“phonological" mastery for each of the 39 ARPAbet phonemes [12],
uniformly at random (mp ∈ [−1, 1]). The phonological mastery that
underlies the word-mastery of both games is an implicit modeling
assumption, based on decades of research in early childhood literacy
development, that there exists a link between a student’s rhyming
and spelling ability with respect to specific words and phonemes
[13]. After random initialization, these phonological mastery val-
ues are then further transformed to derive the mastery of each
Curriculum word in each game. For RhymeRacer, the mastery of
the phonemes that comprise each rhyme-ending (e.g. ‘AY’-‘N’ for
‘RAIN’ , ‘BRAIN’, and ‘TRAIN’) are averaged, and Gaussian noise
(centered on the phoneme-mastery mean, σ = .1) is independently
added to compute the SimStudent’s true mastery of each word
with that rhyme-ending. For WordBuilder, the phonological mas-
tery of all phonemes that constitute a word are averaged to give
the SimStudent’s true mastery of that word.

6.1.2 Simulating Performance Data from Mastery. The ‘correct-
ness’ component of student performance is determined by whether
the student’s true mastery of that word is greater or less than 0

(corresponding to correct/incorrect). However, the value of this
component is randomly flipped at a rate equal to ‘guess’ and ‘slip’
binomial variables. ‘Guess’ and ‘slip’ parameters are common for-
mulations in educational student modeling research[2], which we
use here to make our simulated student data more realistic. Respec-
tively, guess and slip parameters correspond to the probability of
correctly answering a question without true mastery or incorrectly
answering a question despite true mastery. For RhymeRacer, we
set guess and slip rates at .25 and .1, based on the multiple-choice
nature of the round gameplay. For WordBuilder, due to a game
design less conducive to successful guessing, the guess and slip
rates are set at .1 and .1.

The ‘timing’ component of student performance is determined
by the numerical value of the SimStudent’s true mastery, mixed
with Gaussian noise. For these experiments, we capped the max-
imum timing at 10s. The student’s true mastery score is binned
into deciles, and the final score is calculated by sampling from a
Gaussian centered on 10 −MasteryDecile , so that lower levels of
mastery correspond to longer timing components.

6.1.3 Inferring and Evaluating Models of Simulated Students. In
our simulation experiments, we create a new SimStudent with
a distinct, simulated ‘true mastery’ of each word in the curricu-
lum per game. Each Gaussian Process student model then has the
task of recreating or estimating the true mastery from the derived
SimStudent game performance data. As we described in Sec 4,
both task models share a domain and basic computational structure,
with the primary difference being the covariance functions used
to drive inference in each game task. These covariance functions
encode task domain knowledge; indeed, as discussed in Sec 5, the
covariance functions essentially define the task itself.

From the perspective of a simulation experiment, the underlying
domain information (e.g., rhyme-ending equivalence or Levenshtein
distance) is encoded in both the CognitiveModel covariance and
the sampling process used to generate the SimStudent’s ‘true mas-
tery’. The true mastery data is further transformed by an unknown
(from the perspective of the GP student model), noisy process into
student performance data, and the ‘task’ of the CognitiveModel
is to estimate the most likely true mastery distribution.

For our evaluation metric, we use F-1 classification score, the
harmonic mean of precision and recall metrics, where the true class
label for each word is whether the true mastery of the SimStudent
is positive or negative. This classification task may seem coarse
compared to numerical regression, but because the sign of a word’s
true mastery largely determines the correctness component of the
SimStudent’s performance data (modulo guess and slip factors),
this is an important function for theCognitiveModel to accurately
determine. Moreover, while we could calculate a model’s numerical
loss with respect to the SimStudent true mastery, this type of
evaluation is not possible with real student data, limiting the utility
of any conclusions when generalizing to real human students.

6.2 Simulated Evaluation of Transferrable

Models for Multi-task Personalization

Our research questions in this evaluation focus on three main points
regarding the effect of multi-task student model transfer on effi-
ciency and quality of student modeling: (1) Viability: Does source



task data objectively improve target task performance at all? (2)
Proficiency: How does the final model for a target task, using both
re-weighted source task data and new target task data, perform
relative to a model trained with only the new target task data? (3)
Efficiency: How does a model trained with multi-task data perform
compared to a model trained on the same amount of single-task
data? How does the learning curve differ between these paradigms?

These questions represent the fundamental measures of success
for multi-task personalization. So-called ‘negative transfer’ occurs
when a target task model trained with a mix of source and target
task data performs worse than a target task model trained with just
the subset of target task data, implying that training on source task
data is worse than no data and therefore transfer learning is not
viable. A more proficient multi-task model supports the idea that
diverse sources of data could lead to models that perform better
overall in a complex target task. Finally, in data-sparse domains such
as personalized human-robot interaction, more efficient learning
implies that multi-task personalization helps overcome some chal-
lenges of long-term, personalized agent interaction. Despite their
essential simplicity, no student modeling system, to our knowledge,
has yet answered these questions.

In each of the results presented, we simulated 30 ‘rollouts’ (each
of which represents a single SimStudent) of 60 samples of student
performance data. The specific word chosen for each sample is
determined by an active learning procedure that selects the word
with the greatest posterior variance under the current model, i.e.,
the word which the model is most uncertain about. After 15, 30, and
45 samples, themulti-taskmodel switches tasks - roughly analogous
to a four-session study in which each session constitutes 15 samples
and the task alternates every session. The single-task models are
analogous to the typical long-term study in which all data (over
four, 15 sample sessions) comes from the same task.

Throughout these simulation experiments, we strived to explore
test scenarios that mimic realistic operating conditions as closely
as possible. In prior work, collecting even 20 good samples from
a young student during a single interaction session was consid-
ered highly successful [27]. In fact, the relatively low number of
personalized data samples in real-world HRI deployments was a
major impetus for our investigation of transfer learning for multi-
task personalization. Our simulations are computationally efficient
enough to support real-time interaction. The average run-time for
a complete simulation of 30 rollouts for 3 models (2 single-task, 1
multi-task), each with 60 samples was 210 seconds.

Each of the graphs shown represents a different run of 30 rollouts,
with 60 samples in each. Solid colored lines represent the mean
performance of each model type for a given number of samples
and color shading represents the standard error of the mean model
performance across rollouts.

6.2.1 Single-task Learning Curves. Figure 4 show the learning curves
of models trained exclusively on single-task data. As the number of
training samples increases, the CognitiveModels of both games
rapidly increase in F1-score and rollout variance decreases. Around
70 samples, learning plateaus, with both models achieving F1 scores
near .9 (1 represents a perfect classifier), which we attribute to hav-
ing sampled almost every word in the Curriculum. These results
are in line with empirical results from human students presented in

Figure 4: Learning curve for single-task models (F1-score).

Both task models learn good classifiers with 60 samples

[27] and [26], which gives us confidence that our methodology for
evaluating model performance on simulated student data is realistic
enough to effectively characterize the effect of model transfer and
multi-task personalized models.

6.2.2 Multi-task Learning Curves. Figures 5 and 6 show learning
curves that address the primary questions of proficiency and effi-
ciency of transfermodels. Each shows learning curves from separate
30-rollout runs of single-task models for both tasks, plus a transfer
model trained first on 15 samples from RhymeRacer, with data then
transferred to aWordBuilder model, which is trained further on
15 samples fromWordBuilder. TheWordBuilder data is trans-
ferred back to the original RhymeRacer model, and the process
repeats once more, for a total of 60 samples.

Figure 5 depicts this process as a single, extended model trained
on 60 total samples split across two tasks and compares the transfer
model to single-taskmodels trained on 60 samples from a single task.
This presentation makes it easier to compare the complete multi-
task personalization model pipeline to models trained completely
on single-task data, answering questions about the relative final
proficiency of single- and multi-task personalized models.

Figure 6 depicts this process as training two task models, trained
on 30 samples each. WordBuilder-1 andWordBuilder-2 benefit from
pre-training on the RhymeRacer task, and RhymeRacer-2 benefits
from pre-training on the WordBuilder task. This presentation
makes it easier to directly compare each component (RhymeRacer-
1, WordBuilder-1, RhymeRacer-2, and WordBuilder-2) of the multi-
task personalization model to the segment of the single-task model
trained on equivalent task data, answering questions about the
relative efficiency of single- and multi-task personalized models.

Results shown in Figure 5 suggest that training on an equal mix
of reweighted-source and target-task data does not lead to a more
proficient model in this scenario, compared to training on only
target-task data. The single-task models monotonically increase
in classification F-score and plateau between .8-.9, whereas the
final multi-task transfer model classifier averages around .79 for
RhymeRacer and WordBuilder. It is, however, a positive sign
that the multi-task model reaches competitive scores on both target



Figure 5: ‘Proficiency’ of transfer learning compared to

single-taskmodels. Transfer model trades off final classifier

accuracy for multi-task generality

Figure 6: ‘Efficiency’ of transfer learningmodel compared to

single-taskmodels. Transfermodel is equivalent to or better

than single-task models with equal amounts of source data

tasks, and therefore conveys more information (at a cost of slightly
lower F1-score) of a student’s mastery, than a single-task model
can. Whether this trade-off is ultimately worthwhile depends on
the specific application constraints of such a system.

Figure 6 more clearly shows a stronger beneficial effect of trans-
ferrable student models. The RhymeRacer-1 segment of the transfer
model tracks the single-task RhymeRacermodel almost exactly (as
expected, because at this point they are identical models). When
the multi-task model transitions to the WordBuilder-1 segment, we
clearly see a positive effect of model transfer – the WordBuilder-1
segment far outperforms the single-taskWordBuilder model in
the early stages of training. This is precisely the beneficial avoid-
ance of ‘cold-start’ learning that we discussed in Sec. 2.2 and a
clear demonstration that negative transfer is not occurring in this
phase of learning. After the Transfer model transitions back to the
RhymeRacer-2 segment, model performance tracks closely with
the RhymeRacer single-task model, which suggests that negative
transfer also does not occur when data from WordBuilder are

transferred to RhymeRacer. We do not see clear evidence for pos-
itive transfer from WordBuilder-1 to RhymeRacer-2 at this point,
but upon transferring back to WordBuilder-2, the transfer model
again outperforms the single-taskWordBuilder model.

7 CONCLUSIONS, LIMITATIONS, AND

FUTUREWORK

To summarize our findings in terms of the original research ques-
tions: there is strong evidence of positive transfer fromRhymeRacer
toWordBuilder, which leads to more efficient learning and avoid-
ance of the cold-start problem. There is also clear evidence that
negative transfer does not occur fromWordBuilder to RhymeR-
acer, however there is not clear evidence for positive transfer in
this direction. There is also weak evidence that multi-task train-
ing does not lead to greater final task proficiency in this scenario,
though we note that the hypothesized proficiency benefits of multi-
task personalization – that learning from multiple, varied data
sources can improve prediction performance on complex tasks
such as modeling human knowledge – are less likely to be found in
a simulation-based environment which, by necessity, cannot fully
replicate the complexity and difficulty of the real-world task. This
claim, moreso than others, should be further investigated in the
context of real human performance data.

In advocating for researchers to evaluate their systems in the real
world, Rodney Brooks famously quipped “simulations are doomed
to succeed" [5]. We find this philosophy generally laudable, if not
always practical. Simulated human data has an accepted role in
Human-Robot and Human-Agent Interaction research (with no-
table examples in human-interactive machine learning systems)
[11, 29]. While this project meets the criteria for such a design,
we wish to state that this project constitutes an evaluation of the
proposed transfer method, it is not a definitive evaluation. Further
research with human subjects will be necessary, not least, because
one of the major hypothesized benefits of the multi-task personal-
ization paradigm – increased student engagement – could not be
realistically evaluated by simulation experiments.

Whether due to engineering constraints, myopic design, or in-
flexible modeling frameworks, multi-task player modeling is not
yet established as a research area in interactive AI. This paper’s
core contributions include: a motivation and definition of the multi-
task personalization paradigm; two playable game environments;
a novel student modeling approach for multi-task personalization
based on Gaussian Processes; and a series of experimental simula-
tions that establish the theoretical viability and benefits to learning
efficiency from multi-task personalization. Transferrable player
models are a clear and important step towards more flexible and
general player models. By presenting the first detailed system im-
plementation and empirical results from multi-task personalized
models on simulated players, we provide clarity, theoretical ground-
ing, and justification for future in-person evaluations, contributing
to research on more efficient and effective personalized models.
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