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Abstract

In recent years there has been a renewed enthusiasm for the power of computer systems and
digital technology to reinvent education. One-on-one tutoring is a highly e↵ective method
for increasing student learning, but the supply of students vastly outpaces the number of
available teachers. Computational tutoring systems, such as educational software or in-
teractive robots, could help bridge this gap. One problem faced by all tutors, human or
computer, is assessing a student’s knowledge: how do you determine what another per-
son knows or doesn’t know? Previous algorithmic solutions to this problem include the
popular Bayesian Knowledge Tracing algorithm and other inferential methods. However,
these methods do not draw on the a↵ective signals that good human teachers use to as-
sess knowledge, such as indications of discomfort, engagement, or frustration. This thesis
aims to make understanding a↵ect a central component of a knowledge assessment system,
validated on a dataset collected from interactions between children and a robot learning
companion. In this thesis I show that (1) children emote more when engaging in an edu-
cational task with an embodied social robot, compared to a tablet and (2) these emotional
signals improve the quality of knowledge inference made by the system. Together this work
establishes both human-centered and algorithmic motivations for further development of
robotic systems that tightly integrate a↵ect understanding and complex models of inference
with interactive, educational robots.
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1 Research Problem & Motivation

In 1984, educational researcher Benjamin Bloom presented his now-famous “two-
sigma” result: students that received one-on-one tutoring from a teacher performed nearly
two standard deviations higher than the mean student who received only group instruction
[Bloom (1984)]. Given the vast gap between the supply of available teachers and needy
students, Bloom challenged educational researchers to “find methods of group instruction
as e↵ective as one-to-one tutoring.”

The search for such methods may turn out to be unnecessary. The field of Intelligent
Tutoring Systems (ITS) seeks to develop artificially intelligent software that can provide
the benefits of personal instruction at scale. Already, thousands of students nationwide
benefit from the fruits of ITS research, through commercial software such as the Carnegie
Math Tutor.

Yet many of these systems fall short of Bloom’s initial estimate of the benefit of
one-on-one tutoring. Though the initial “two-sigma” benefit of one-on-one tutoring may
have been overstated, a recent meta-analysis of ITS research suggests that ITSs provide
approximately a “.76 sigma” increase [VanLehn (2011)]. In addition to learning gains, the
subjective experience of interacting with an ITS still leaves much to be desired. ITSs
are often designed as digital workbooks, with the central activity focused on the tutoring
system providing practice problem after practice problem, and o↵ering the student a
limited action space (often just the choice of providing an answer or asking for a hint).

Recent research on school-age children suggests that interactive learning styles such as
“learning through play” and “peer learning” are highly e↵ective, for example [Slavin (2011)],
[Crouch and Mazur (2001)], and [Keppell et al. (2006)]. Therefore, we believe these princi-
ples should be incorporated into the design of our computational tutors. The ICAP
framework di↵erentiates between four types of educational activity, emphasizing compu-
tational systems that support Interactive and Constructive activities over merely Active1

or Passive learning opportunities [Chi (2009)]. This framework increasingly forms the
basis of new research in the ITS community.

Even those ITSs that do attempt to engage students in interactive dialogue face
limitations compared to human tutors. Typically, they are limited to sensing the student
only by her2 actions in the program, and their actions are likewise limited to on-screen
events. In contrast, the interaction between a human tutor and his student draws on rich,
multimodal data and permits a wide range of curricular and meta-curricular actions that
take place in the real world. Program performance is merely one feature among many
that a human tutor uses to assess a student’s knowledge state, and students have a vastly
expanded space of actions beyond what is typically a↵orded by ITSs.

By centering the interaction around collaborative, interactive problem-solving and
using a↵ective information to construct models of students’ learning, the next generation
of computational tutoring systems may provide benefits much closer to those provided
by human tutors. In this thesis, I argue that physically embodied social robots, capable
of perceiving and understanding a↵ective signals are a more appropriate platform for
accomplishing this task than software-only tutors. I support this argument with results

1An example of an educational activity that is active but not constructive or interactive is answering
a question in a workbook-style ITS

2In order to avoid cumbersome constructions such as ‘he or she’ I adopt the following convention:
in odd numbered chapters, I use the masculine ‘he’ for the tutor and ‘she’ for the student. In even
numbered chapters the roles are reversed. Thus in Chapter 2, ‘she’ refers to the tutor and ‘he’ to the
student
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addressing two main research questions:

1. Are children more emotionally expressive when en-
gaged in an educational interaction with a social robot,
compared to a tablet?

2. Can these emotional expression signals improve the
performance of state-of-the-art student models?

To address these questions, I conducted a post-hoc analysis of emotional expres-
sion on video recordings of the experiment described in [Gordon and Breazeal (2015)] and
[Gordon et al. (2015)]. In this experiment, children played a short, interactive story-telling
game with either a robot or a tablet. Periodically, the robot/tablet would assess the
child’s reading ability by verbally asking her to point to a particular word written on
the screen. Chapter 3 describes the results of the analysis of children’s facial expressions
during this educational interaction and shows that children who interacted with a robot
produced more emotional expressions. Chapter 4 describes work showing that by using
this emotional expression data as feature input to train a knowledge inference model, the
model is better able to generalize to test data from the same population.

Summary: Preliminary research suggests that physically embodied robot tutors can
deliver more engaging and empathic educational experiences. In this thesis, I seek to
add to this increasing body of evidence by establishing social robots’ unique capability
to engage children in a↵ect-aware tutoring experiences. I show that children are more
emotionally expressive when interacting with a social robot and that an autonomous
tutoring agent can leverage these emotional signals to construct richer models of child
learning that can better infer children’s hidden mental states.

2 Related Work

In this section I give an overview of recent Intelligent Tutoring Systems research, with
particular emphasis on the current state-of-the-art in a↵ect-aware tutors. I then discuss
recent results from the field of Human-Robot Interaction that illustrate how the physical
embodiment of a robot can facilitate deeper engagement and foster better learning. Fi-
nally, I examine previous attempts to unify a↵ect-aware algorithms with physical robots
and discuss how this thesis work represents a distinct contribution to the previous body
of research.

2.1 A↵ect-aware Tutoring Software

Intelligent Tutoring Systems (ITSs) refer to a wide variety of computer-based educa-
tional tools. Common features of an ITS include the ability to change its behavior in
response to student input, provide help in the form of a hint or additional instruction,
and conduct some form of evaluation of the user. VanLehn[VanLehn (2011)] distinguishes
between two broad classes of computer-based tutors: workbook style systems that provide
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hints or feedback on students’ answers, which he refers to as ‘Computer-Aided Instruction’
(CAI) systems and more freeform software, characterized by interactivity, open-response
answers, and feedback on students’ process towards a solution, rather than just the so-
lution itself. VanLehn refers to these types of software tutors as ‘Intelligent Tutoring
Systems’.

As previously discussed, ITSs are already in use outside of the lab, in schools or day-
cares. But, as is the case in many of the applied sciences, the deployed systems typically
lag behind the cutting edge of research. Thus, while commercial tutoring systems rarely
(if at all) consider students’ a↵ective or emotional states, the research community has be-
gun to address these problems. The subfield of “a↵ect-aware tutors” [Woolf et al. (2009)]
seeks to design more e↵ective artificially intelligent tutoring systems that explicitly sense,
model, and reason about students’ a↵ective states. Inspired by psychological theories of
emotion and learning, a↵ect-aware tutors seek to foster engagement and learning from
data-driven estimates of students’ a↵ective states. For example, the Wayang geometry
tutor[Arroyo et al. (2004)] is a system that features a virtual agent which helps students
solve geometry problems. In order to foster engagement, the tutor uses an empathy-based
a↵ective behavior system: the emotional actions of the tutor are intended to mirror the
(estimated) emotional state of the user. For example, if a child appears bored, the tutor
might also display signs of boredom before suggesting a new topic or problem to keep the
student engaged.

Recently, several major shifts in the research landscape have enabled more capable and
e↵ective a↵ect-aware tutors. First, a↵ective sensing technology has improved greatly over
the past decade. The modern concept of A↵ective Computing [Picard (2000)] was born
less than 20 years ago and has matured into a highly active research topic with impact
in many other fields. Major advances in unintrusive a↵ective sensing technology, such
as algorithms for facial expression analysis [El Kaliouby and Robinson (2005)], wristbands
that sense electrodermal activity, and pressure sensitive chairs and computer peripherals
[Reynolds and Picard (2004)] have enabled the collection of large quantities of real-time
a↵ective data without significantly disrupting the interaction.

Second, the widespread use of machine learning methods in Artificial Intelligence
and increase in “Big Data” technologies have given researchers the tools to manage and
analyze this a↵ective data. As a result, researchers working in these areas are better
equipped to understand how to interpret and act on the collected data.

Finally, enthusiasm for computer education technology has skyrocketed in the last
decade. This enthusiasm, largely precipitated by the rise of Massive Open Online Courses
(MOOCs), has led to significant development of online educational technology outside of
research labs, for instance, by venture-backed start-ups (e.g., Coursera, Udacity) or ded-
icated branches of academic institutions (e.g., EdX - a collaboration between Harvard
and MIT). These trends combine to make the current research environment well-suited
for a renewed e↵ort towards a↵ect-aware tutoring technology.

Recent e↵orts to develop a↵ect-aware tutoring systems have culminated in a num-
ber of major systems (e.g., the Wayang Tutor[Arroyo et al. (2004)] and A↵ective Meta-
Tutor[VanLehn et al. (2011)] projects) which have been extensively studied. Yet much of
the work on a↵ect and modeling in the ITS literature focuses on models to infer a↵ect.
Typically, once a↵ective states are detected or identified, they trigger simple behavioral
rules - a tutor might change its facial expression or o↵er a supportive comment. However,
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these rules are hardcoded by the developers and remain fixed throughout the deployment.
One of the first projects to combine a↵ect and tutoring was the A↵ective Learning

Companion[Burleson (2006)], developed by Winslow Burleson and Roz Picard at the MIT
Media Lab. The A↵ective Learning Companion used sensors including a pressure sensitive
mouse, cameras to analyze facial expression, and a posture-sensitive chair to infer a
student’s a↵ective state. Two of the most important states considered were ‘Flow’, a
theorized state of enjoyable focus on an optimally challenging task (described by Mihalyi
Csikszentmihalyi[Csikszentmihalyi and Csikszentmihalyi (1992)]), and ‘Stuck’, an opposing
a↵ective state characterized by frustration towards an overwhelming challenge, while
completing a complex puzzle task. This project has since spawned several successors,
and many of the features of the A↵ective Learning Companion (e.g., the use of virtual
agents as supportive tutors, the use of physiological sensors to infer a↵ect, and the use
of a↵ective signals to influence the tutor’s behavior in real time) are now core aspects of
nearly all other a↵ect-aware tutoring systems.

In the A↵ective Meta-Tutor project, a↵ect is primarily used as a tool to help students
maintain motivation. Tutoring occurs at several levels: at a basic level, students use a
graphical interface to define causal networks in order to develop ‘systems thinking’. The
‘Meta-Tutor’ gives students advice on how to best plan their solution strategy (e.g., by
focusing on solving one part of the problem before considering the bigger picture). The
a↵ective component of the Meta-Tutor uses information from students’ facial expressions
and posture to infer a↵ect, then periodically provides supportive statements (e.g., “It
seems like you are using the strategy and that all your e↵orts are helping you to make
strong connections in your brain. Nice work!”) to either congratulate or motivate students
to follow the Meta-Tutor’s advice. Evaluation of the a↵ective component was mixed:
students who had interacted with the a↵ective Meta-Tutor showing learning gains (over
students who interacted with a non-a↵ective Meta-Tutor) during a training interaction,
but these gains did not persist into the later ‘transfer’ phase of the experiment.

The A↵ective Autotutor[D’Mello et al. (2011)] is an extension of the more widely stud-
ied Autotutor ITS[Graesser et al. (2005)]. The A↵ective Autotutor also estimates students’
a↵ective states from posture and facial expression data which triggers behavioral rules

(a) An a↵ect-sensitive
learning companion
[Burleson (2006)]

.

(b) The Wayang Mathematics Tutor
uses diverse agent representations,
capable of showing positive, neutral,

and negative
a↵ect[Woolf et al. (2009)]

.

(c) AutoTutor
provides motivational
support based on
real-time a↵ect

detection[D’Mello et al. (2011)]
.

Figure 1: Previous attempts to develop a↵ect-aware tutoring systems
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designed to engage and motivate students. Autotutor is designed around natural lan-
guage dialogue and has more sophisticated models of conversation and dialogue than a
typical ITS. In an experiment comparing the e↵ectiveness of the A↵ective Autotutor to
the ordinary Autotutor, researchers found that for low domain knowledge students, the
A↵ective Autotutor system increased learning gains, but for students who began the in-
teraction with a high level of domain knowledge, the A↵ective Autotutor reduced their
learning. One possible explanation is that the additional a↵ective dialogue was distract-
ing or seemed unnecessary to these students, which may have caused them to ignore the
tutor. This highlights the need for more sophisticated models of dialogue that explicitly
consider a↵ect. Understanding how frequently an ITS should provide feedback has long
been an active research topic[Corbett and Anderson (2001)], and a↵ective information may
be one key to the solution.

The ability of ITSs to recognize and understand a↵ect is growing. Several ITSs have
been developed and studied that respond to a↵ect, and results show that a↵ect can
indeed improve students learning, under certain conditions. These results also emphasize
the importance of developing new techniques for interaction that explicitly consider a↵ect.
Currently, most a↵ect-aware tutors use rule-based systems, informed by modern theories
of emotion and learning, to act on a↵ective information. While these systems currently
represent the state-of-the-art, their limitations suggest that more flexible and general
models of decision making may ultimately be necessary.

2.2 Physically Embodied Robots

Personal robots are rapidly moving into our daily lives. Over the last 15 years, re-
searchers have dedicated serious e↵ort towards the development of social robots: robots
that can interact naturally with humans, using the same sorts of multi-modal social
cues used in typical human-human interaction. Researchers have long recognized the
potential of technology to inspire and motivate childhood education [Papert (1980)] and
social robots are the latest heirs to that tradition[Mead et al. (2012)]. Social robots have
been successfully deployed in schools to teach topics as varied as English vocabulary
[Tanaka and Matsuzoe (2012)], chess [Leite et al. (2014)], and nutrition [Short et al. (2014)]
to children. Other research has explored the use of social robots as tutors for mathemat-
ics [Brown and Howard (2014)], anatomy [Howley et al. (2014)], and general analytic skills
[Leyzberg et al. (2014)]. Long-term studies of robots, while less common, have demon-
strated that social robots can be an e↵ective tool for improving young children’s literacy
skills[Kory and Breazeal (2014)].

Much work in the field of Human-Robot Interaction (HRI) has been dedicated to in-
vestigating the e↵ects of a physical robot’s presence, compared to screen-based represen-
tations, in assistive and educational contexts. I summarize a few key works and their
results here:

(1) Physical robots increase task compliance. In a 2011 study, students were more
likely to comply with a physical robot’s request than a screen-based representation’s
request, even if the task was odd or uncomfortable [Bainbridge et al. (2011)].

(2) Physical robots are more able to maintain e↵ective long-term relationships. In a
six week study of robots in the home, participants with physical robot partners recorded
caloric intake and exercise habits for twice as long as those who used the same software
or a paper equivalent [Kidd and Breazeal (2008)].
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(3) Physical robots produce greater learning gains. In a 2012 study, students played
several rounds of a puzzle game and received lessons on techniques for solving the puzzle.
Those who got lessons from a physical robot completed the final puzzles significantly
faster and improved their solving time significantly more than those who received iden-
tical lessons from an on-screen video of the same robot [Leyzberg et al. (2012)].

These results provide the initial suggestion that physical robot tutors may be particu-
larly well-suited to tutoring and educational applications. However, due to the di�culty of
long-term deployment of robots, many findings in the HRI literature are results gathered
from one-time interactions, in a laboratory setting. Typically the robots used in these
studies are controlled either by a hidden human operator (in what is called “Wizard-
of-Oz” or “WOz” control) or by simple scripted behavioral rules. Thus, there remain
significant challenges to overcome before social robots are as widely used as software-only
tutoring systems. Chief among these are developing techniques to enable robots to make
intelligent decisions about social contexts and giving robots the ability to construct com-
plex action models so that they remain engaging and helpful over repeated interactions.

2.3 Robots and A↵ect

Within HRI, some work has attempted to enable physical robots to respond to hu-
man a↵ect in educational scenarios. As with ITSs, however, these responses are typi-
cally the result of scripted rules. For instance, in a recent study by Szafir and Mutlu
[Szafir and Mutlu (2012)], students wore an EEG sensor while a robot told a story. In one
condition, the robot responded to perceived student decreases in attention by producing
emphatic, exaggerated gestures. Following the robot’s story, students were quizzed on
details from the story. Participants that heard the story from the a↵ect-adaptive robot
had better recall, compared to students who heard the story from a robot that did not
respond to the EEG signals.

As part of the LIREC project, researchers from the EU have developed a robotic
chess tutoring system that uses sophisticated a↵ective models to give empathy-based
support[Leite et al. (2014)]. The robot models a child’s a↵ective state by tracking in-game
events associated with known emotional states (e.g. losing a game, or making a bad
move is associated with low valence, while a very evenly-matched situation is associated
with high-engagement) in combination with external physical sensors. The robot o↵ers
support by choosing a supportive strategy that mirrors the child’s (estimated) a↵ective
state.

The work for this thesis is distinct from previous e↵orts to unite a↵ect, tutoring, and
robots, in that we are incorporating a↵ect into a learning model. While other work has
used a↵ect as an input to behavioral rules, this work is the first to have a robotic tu-
tor system use a↵ective data to learn models of how students’ a↵ect and learning intersect.

Summary: Over the last several years, great progress has been made in the area of
a↵ect sensing and our understanding how humans learn and interact with expressive,
social robots has become more sophisticated. These foundational steps have paved the
way for the development of more sophisticated modeling and control algorithms, capable
of replicating the abilities of good human teachers. Thus far, research e↵orts to develop
a↵ect-aware robot tutors within the HRI community have taken for granted the idea that
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physical robots are a better platform for artificially intelligent tutors. In this thesis, I
adapt the modeling techniques of Intelligent Tutoring Systems to take advantage of the
unique interaction dynamics and sensing modalities that a physical robot provides. I
show that emotional signals can be a strong signal of a student’s level of understanding,
and that students display these signals more prominently in an interaction with a phys-
ically embodied robot than in the same interaction with software alone. Together with
other research on the impact of emotion and embodiment in tutoring interactions, these
results constitute a strong endorsement for the use of physically embodied, emotionally
responsive social robots as computational tutors.
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3 Are Children More Expressive When Interacting
With a Robot?

This chapter addresses the first of the two major research questions posed previously:
“Are children more emotionally expressive during educational interactions with a social
robot, compared to a tablet?” By answering this question we seek to isolate and identify
aspects of how the interaction between children and educational technology changes,
depending on that technology’s form factor. In the subsequent chapter, I will show how
these emotional signals can be used by an a↵ect-aware tutor to build more accurate
models of what parts of a curriculum students have or have not mastered, and discuss
how sensing a↵ective expression can help computational tutors learn personalized models
of how emotion and learning intersect for students.

Here, I wish to determine whether children generate more emotional signals when
interacting with a social robot, compared to a tablet. Anecdotally, some parents report
allowing their children to play with tablets in order to keep them from being too ex-
pressive. Anyone with young children may find the anecdote, reported in [Bilton (2013)],
familiar:

“I recently watched my sister perform an act of magic. We were sitting in a restaurant,
trying to have a conversation, but her children, 4-year-old Willow and 7-year-old Luca,
would not stop fighting. The arguments – over a fork, or who had more water in a glass
– were unrelenting. Like a magician quieting a group of children by pulling a rabbit out
of a hat, my sister reached into her purse and produced two shiny Apple iPads, handing
one to each child. Suddenly, the two were quiet. Eerily so. They sat playing games and
watching videos, and we continued with our conversation.”

In contrast to children’s a↵ect when using iPads or other screen-based technologies,
children are very socially expressive around robots, according to the latest research on
Child-Robot Interaction (e.g., [Belpaeme et al. (2012)]). Perhaps most strikingly, social
robots have been used as therapeutic tools for autistic children [Scassellati et al. (2012)].
In one experiment, autistic children that were typically withdrawn or socially unrespon-
sive when interacting with a therapist became much more socially engaged and active
in a triadic interaction with a therapist and a social robot [Kim et al. (2013)]. This phe-
nomenon is currently the subject of much research; currently, no comprehensive theories
of how or why have been accepted by the autism research community.

Even so, it seems plausible that, due to a social robot’s resemblance to recognizable
social entities (e.g., other humans, pets, television characters), children are predisposed
to interact with a robot in a social way. This initial predisposition, combined with
reinforcement from the technological capabilities of the robot itself – social robots are
typically designed to respond to social interaction cues – may lead children to interact
more expressively and socially with robots than they would with traditional on-screen
technologies. In this thesis, I wish to empirically test this hypothesis in the context of
an educational interaction with a robotic tutor, without making claims about the cause
of this phenomenon. In the following sections, I will define what I mean by “emotional
expression” and tools and techniques I used to measure it.

Most research studying human a↵ect uses human coders to manually review video
footage of interactions and label the video with a discrete set of pre-determined a↵ective
states. Sometimes the coders will have experience or training in emotion recognition, but
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most commonly, the video coders are either the experimenters themselves, undergraduate
research assistants, or online workers (e.g., workers on Amazon Mechanical Turk). Inter-
coder reliability ratings can help verify the accuracy of labeling, but in this thesis I take
an entirely di↵erent approach. I envision a world in which a↵ect-aware robots will be
widely deployed, robust enough to support long-term interaction, and intelligent enough
to act completely autonomously. Human annotation poses an impediment to the first
criterion, and is directly opposed to the last. As described in Section 2.1, methods for
unobtrusively and autonomously sensing a↵ect are rapidly improving. In line with this vi-
sion, I rely solely on autonomous sensing throughout this thesis. Given these constraints,
the research question can now be better specified as “Are children more expressive, as
measured by an autonomous emotion detection system, when interacting with a robot?”

3.1 A↵dex: a tool for autonomous a↵ect detection

In order to analyze childrens’ emotional expression, I used the A↵dex mobile SDK, a
commercial tool marketed by A↵ectiva, Inc. to enable developers to develop a↵ect-aware
mobile applications. A↵dex uses state-of-the-art face detection and analysis algorithms
to extract estimates of four physical facial expression features (Smile, BrowFurrow,
BrowRaise, and LipDepress) and two hidden a↵ective features (Valence and En-
gagement) from video or images of faces. For each of these six metrics, the SDK produces
a number in the range of [0, 100], with the exception of Valence, which ranges from [-100,
100].

The A↵dex SDK can operate on four di↵erent types of data: real-time input from
phone camera, single images, video files (played back as if they were real-time streaming
data), and sets of timestamped images. The first method was rejected because this thesis
describes a post-hoc analysis of emotion, and therefore real-time data was not available.
The second method was rejected because temporal features (such as the dynamics of
facial landmarks over time) are highly informative for classification of emotion. The
famous “tennis face” example (in which human participants were found to be unable to
reliably distinguish between the facial expressions of winners and losers in tennis matches)
[Aviezer et al. (2012)] is a simple and forceful illustration that expression analysis of single
images in isolation is a di�cult problem, even for other humans – the most advanced
processors of (human) facial expressions on the planet.

The third option (video file) has the disadvantage of producing results at a slower
rate, determined by the SDK itself, whenever the algorithm has accumulated enough
information to generate a result. Because the results cannot be definitively linked back
to a particular moment of video, this method makes reintegration with the rest of the
data di�cult. The final option, which I chose for this analysis, is to analyze sequences of
time-stamped still images, all extracted from the same video. Because the images are all
derived from the same source, A↵dex can apply the more advanced a↵ect detection algo-
rithms described above by using each image’s associated timestamp to extract temporal
features. In addition, results are received for every frame, and each frame result can be
precisely linked back to the rest of the data through its timestamp.
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Figure 2: Faces of professional tennis players at the moment of winning (top row) or
losing (bottom row) a match. Human participants could not reliably distinguish the two
cases by facial expression alone.

Figure 3: Picture of the interaction setup from which the dataset was collected. Children
played a storytelling game with a robot, during which they were periodically prompted
to read a word

3.2 Task and Dataset

The data used in this analysis come from video records of a previous experiment conducted
in the Personal Robots Group [Gordon and Breazeal (2015), Gordon et al. (2015)]. In this
experiment, children (age 4-8) played a story game with a robot. The interaction was
designed around a child-robot-tablet interface, in which the child and robot sit across
from each other, with a tablet placed in between them to act as a shared, social context
that can be sensed by the robot (Figure 3).

The child and the robot played an app-based game called “Storymaker” which was
developed in-house. In the game, graphics of characters (such as animals or objects)
float on a background of di↵erent scenes (such as a beach or jungle) and can be moved
by the child via physical touches and swipes. As the child moves characters to di↵erent
regions of the scene, the game procedurally generates a natural language sentence that
characterizes this action3. For example, if the child moves the Dragon character graphic
towards the rightmost side of the forest scene (depicting a tree), the game might generate
the sentence “Dragon goes to the tree”. This sentence is spoken aloud by the robot, and
the words of the spoken sentence appear at the top of the screen.

3this procedure is determined by an .xml file specified by the experimenters for each story. For more
detail, see [Gordon et al. (2015)]
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The robot itself was framed as a younger peer. It greeted the child by saying “Let’s
play word games together!” and was introduced by the experimenter as “a young robot
who has just learned to speak, and wants to learn to read.” This framing encourages
the child to treat the robot as a peer, rather than as an authority figure, and casts the
evaluative portions of the interaction in a more playful, inquisitive light rather than as
a formal ‘test’. Prior to the interaction with the robot, the child did complete a formal
test. The experimenter administered the TOWRE [Torgesen et al. (1999)] test, to assess
the child’s initial level of reading ability.

During the storytelling phase of the interaction, the child would move the di↵erent
characters across the scene. After each ‘action’ taken by the child, the robot would speak
a line of the story, procedurally generated by the game, based on both a pre-determined
script and which characters the child had recently moved. The spoken sentence (e.g.
“The dragon goes to the bird”) would also appear in written form at the top of the
tablet.

50% of the time, after the robot had spoken a sentence, the robot would prompt the
child to read one of the words in the sentence by saying: “I don’t know how to read the
word [X], can you show it to me?” The game would then pause until the child tapped
on one of the words in the sentence (shown at the top of the tablet). If the child tapped
the correct word, the game would continue. Otherwise, the tablet would read the tapped
word4, thereby letting the child know whether she was right or wrong. If the child tapped
the wrong word, she would be prompted to try again by the robot (“I don’t think that’s
right. Can you try again?”). After two incorrect tries, the tablet would highlight and
read the correct word, and the game would continue. On average, a child experienced 11
of these demonstration opportunities during the interaction. After the storytelling game,
the robot asked the child to teach it a few more words. During this post-test, the robot
again asked the child to identify a series of requested words, each presented as part of a
full sentence, by tapping on the requested word in the sentence.

3.2.1 Tablet-only Interaction Participants

The preceding description describes the interaction for the majority of participants. How-
ever, there was a smaller control group that did not interact with the robot. In this
condition, a white cardboard box was placed over the robot for the duration of the ex-
periment, The children were not told there was a robot underneath the box, only that
they would be playing word games on a tablet. Other than the presence of the covering
box and the removal of experimenter references to the robot, however, the experiment
proceeded exactly as described above. The robot’s story ‘speech’ still came from the same
speakers and the children were still prompted to read words, the underlying system did
not change. The presence of this condition provides an ideal scenario to examine how
children’s emotional expressiveness varies with the presence or absence of a social robot
during otherwise identical interactions.

3.3 Capturing A↵dex Data

In this section I discuss the process for extracting and classifying a↵ective data from
video of the recorded interactions.

4the tablet was framed as a partial agent in the interaction as well, fulfilling the role of teacher by
giving feedback to the child and robot
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Figure 4: Example frame of collected footage (identifying information removed for
publication). All video data was recorded at approximately this angle

Video of the entire interaction was recorded from multiple angles. In this thesis, I
deal exclusively with video footage recorded from a single camera, located behind and
to the side of the robot, aimed at the child’s face (Fig. 4). In addition to video data,
the full state of the game, all child actions on the tablet, all robot speech, and all tablet
actions (e.g., highlighting the correct word if the child answered incorrectly twice) were
recorded and synchronized via ROS, an open source robotics framework that features a
unique data structure called ROS ‘bags’, synchronized records of multimodal data that
support search, playback, re-recording, and many other functions[Quigley et al. (2009)].

Though complete footage of the interaction was recorded, in this thesis we are primar-
ily concerned with analyzing children’s emotions while they are engaged in educational
activity. Therefore, we only analyzed video footage from specific times during each in-
teraction. As discussed in the previous section, after a child moved the story characters,
the robot would sometimes ask the child to read a word, denoted [X], by asking the child
“I don’t know the word [X]. Can you show it to me?” The robot was asking the child
to identify word [X] in text on the screen, thus providing both an opportunity for the
child to demonstrate her reading ability and an opportunity to collect spontaneous facial
expression data in real educational tutoring scenarios. Because all video was collected
several months before conducting the a↵ective analysis, the first step was to identify the
relevant portions of the interaction that contained the data of interest. As noted above,
all data was logged via ROS.

By searching through the ROSbag logs, I was able to identify the precise times at
which the robot asked a question (an “asking event”) and the times at which the child
gave an answer to that question (a “response” event). I extracted video footage from a
window of 5 seconds before each asking event and 5 seconds after each response event,
which constitutes a “session”. Each session corresponds to the time between the robot
asking a single question and the child providing a response, plus 5 seconds of bu↵er before
and after these points. In this chapter, which addresses Research Question 1 - whether
children are more expressive when interacting with a robot - I primarily analyze the data
at the participant level, that is, by aggregating the full set of a participant’s sessions into a

19



... ... ... ...} {
Avg Smile: 18
Avg BrowFurrow: 7
Avg BrowRaise: 62
Avg LipDepress: 4
Avg Valence: -24
Avg Engage: 67
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Figure 5: Complete data pipeline, from video footage of each session to average emo-
tional expression over the full interaction. Still frames are sampled from session video
footage at 20fps (depicted as red circles), then passed to the A↵dex SDK application
to produce unfiltered measurements for each frame, depicted as yellow circles. These
measurements are then passed through a median filter for smoothing, producing data
points for each metric (depicted as green circles). Finally, for each participant, the data
points from each metric are averaged to produce a mean metric value across the entire
interaction, depicted as purple blocks.

single point of participant data. In the subsequent chapter, which deals with the question
of whether emotional signals can improve computational tutor inference, a session forms
the basic time step unit of analysis. Section 4.1.2 details the construction and training
of di↵erent models of student knowledge from session data.

3.4 Measuring Emotional Expressivity

After identifying the video footage that made up each session, I needed to extract an un-
derstanding of the emotional expression in each session. I sampled still frames from video
footage of each session (each child experienced 29 sessions, on average) at approximately
20fps. These frames were then loaded onto an Android phone (as of March 2014, A↵dex
only supported iOS and Android SDKs for public use) for analysis. Using the A↵dex
Android SDK, I wrote a simple app that, for each session, created a Detector object and
analyzed all frames in that session, using the temporal algorithm described in Sec 3.1.
The output of the algorithm was, for each frame, either a single measured value for each
of the 6 metrics, or a null measurement (indicating that no face was identified in the
frame). Each frame result was then written to file, and manually transferred to a secure
data storage location for analysis.

Autonomously sensed a↵ective data is di�cult to acquire and even more di�cult to
interpret. It was no surprise, then, that the initial measurements from A↵dex were noisy,
sporadic, and highly variable, even on a frame-by-frame basis. Often, frame results would
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Figure 6: Line graph of measurements from A↵dex, before and after median filtering

alternate rapidly between consistent, modest values (indicative of correct processing and
analysis) and null results (indicated by A↵dex reporting “No Face Found”) or extreme
results (e.g., minimum or maximum values for all metrics). In order to smooth out these
discontinuities, I applied a median filter to the data, operating over a sliding window of
approximately 1s, or 20 frames. More concretely, for each frame in the measured data, I
computed a median of the 10 measurements before that frame and the 10 measurements
after it. For the purposes of this computation, null measurements or measurements
of 0 were excluded from the median5. If, excluding null or 0 results, at least 25% of
the measured values in the sliding window were valid, then I computed a new median-
smoothed data point for that frame; otherwise, that frame was marked as “no data”.
This process is visualized in Figure 6, which depicts results of the unfiltered measurements
received from A↵dex and the same results after smoothing via the median filter. For
clarity, I will henceforth refer to the raw results computed by A↵dex as measurements,
and the corresponding median-smoothed values as data points. Note that a frame with a
null measurement could generate a valid data point if, e.g., it were surrounded by valid
(i.e. non-null or zero) measurements. Similarly, a frame with a valid measurement could
fail to generate a valid data point, e.g., if it were surrounded by null or zero measurements.
The end result of this median smoothing process is a set of data points, somewhat smaller

5Measurements of 0 were so frequent, compared to nearby measurements of (e.g., 1 or 2) that I treated
them equivalently to null measurements
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than the size of the original measurement data, with significantly fewer spikes or rapid
increases and decreases. However, when such increases or decreases are present, they are
more likely due to a bona fide a↵ective signal, rather than mere noise.

3.5 Analyzing A↵dex Data

Following the median-smoothing process, I examined individual videos in an attempt to
evaluate A↵dex as a tool for developing a↵ect-aware robots. For each of the 6 A↵dex
metrics discussed in Section 3.1, I calculated an “e�ciency” score: the number of frames
that generated a valid (median-smoothed) data point, divided by the total number of
frames analyzed. The e�ciency of a metric, m, across the footage of a participant p is
given by:

Em,p =
# of valid data points of m in Participant p’s sessions

total frames in Participant p’s sessions
(1)

Thus, for each metric we can identify how well A↵dex was able to extract valid data,
in essence identifying which metrics are most reliably sensed by A↵dex. In addition,
I combined all six metrics at the participant level, in order to identify and eliminate
data from low-e�ciency participant footage, that is, footage from interactions in which
A↵dex did not produce much data. All of a participant’s sessions occurred during a
single interaction, and were recorded in the same ROSbag. Therefore, I refer to the set of
footage from which a participant’s sessions were derived as simply “Participant p’s bag”.

Figure 7 depicts a histogram of participant bag e�ciency, Ep, over all metrics.

Ep =

P
m2M Em,p

|M | (2)

Bags which had an e�ciency score below 20% were excluded from subsequent analysis.
8 bags (out of 50 total) fell into this category. Of these, 2 bags had an e�ciency score of
0, indicating that no valid data was extracted from these bags, and 2 more were below
5%. Subsequent review of the footage from these bags indicated that this was likely to
happen if, for instance, the video had been recorded at an unusual viewing angle or if the
child’s face was simply not processed well by the A↵dex classifier. Figure 8 shows the
average e�ciency of each metric over all bags (excluding those that met the low-e�ciency
exclusion criteria discussed above).

When interpreting these results, it is important to remember that low e�ciency does
not necessarily imply that A↵dex is less accurate at detecting these metrics. The e�ciency
score is based on the overall amount of non-null, non-zero a↵ect measurement, thus it
depends on both how much genuine a↵ective signal there is to be measured, in addition
to how well it is processed. In this sense, the e�ciency score is a measure of the total
amount of useful information each metric provides. The e�ciency of each metric will
provide some guidance when considering how to incorporate a↵ective information into a
predictive model (Section 4.4).

What, then, can be inferred from the e�ciency scores of each metric? Engagement
and Valence have high e�ciencies - possibly because they are aggregate metrics that are
not directly dependent on only a few physical facial action units. Of the physical metrics,
BrowRaise is a curious outlier, it has much higher e�ciency than any other physical
metric. This, combined with the high e�ciency of engagement, could imply that children
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Figure 7: Histogram of participant data by percent of frames that generated valid data
points. The eight participants (shown in red) whose footage generated valid data from
< 20% of frames were excluded from all further analysis.

Figure 8: % of frames that generated a valid data point, for each metric.

were, in general, highly engaged during the interaction. Ultimately, however, e�ciency
is a somewhat limited statistic from which to draw conclusions in isolation. In the next
section, we will revisit the e�ciency results in the context of additional data on the overall
level of emotional expressiveness in both robot and tablet conditions (i.e., what was the
average non-zero, non-null value recorded by A↵dex?)
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Table 1: T-test results by metric, comparing di↵erences in mean interaction value across
Robot and Tablet conditions

Metric T-test statistic value p-value
Smile 2.23 *0.037*
BrowFurrow 0.898 0.378
BrowRaise 2.68 *0.011*
LipDepress 0.328 0.746
Valence 0.844 0.405
Engagement 2.59 *0.014*

3.6 Assessing Overall Emotional Expression

In order to determine a participant’s overall level of emotional expressiveness, I combined
the data points from all of a participant’s question-response sessions into a single ‘bag’
of analysis. Within these bags, for each metric, I calculated the mean data point value:
in other words, the average value, over the entire participant interaction, of the median-
filtered A↵dex measurements. Thus, for each metric, I obtained 27 mean interaction
values from participants that interacted with a robot, and 13 mean interaction values
from participants that interacted with a tablet. Because valence, unlike other metrics,
ranges from [-100, 100] rather than [0,100]. In order to analyze all metrics within the
same scale, I computed the mean of the absolute value of the valence data, assuming that
scores of �50 and 50 represent equal amounts of ‘expressivity’ (in opposite directions).
For each metric, the means and standard error of the mean for each population (Robot
vs. Tablet) are shown in Figure 9. Figure 5 depicts the complete data analysis workflow,
from video footage to average emotional expression data.

3.7 Results

For each metric, I first conducted a Shapiro-Wilk test on both populations to establish
whether the distribution of mean interaction values was non-normal. The results in all
cases were negative - there was not enough evidence to conclude that the data was non-
normal. Then, for each metric, I conducted a Student’s T-test on the robot and tablet sets
of interaction means to determine whether there was a statistically significant di↵erence
between the emotional expression data from the robot condition and that from the tablet
condition.

The test results showed that children in the robot condition did generate higher aver-
age emotional metric values, compared to the children in the tablet-only condition. These
di↵erences were statistically significant for 3 of the 6 metrics: Smile, BrowRaise, and
Engagement. While none of the other metric di↵erences reached significance, the aver-
age interaction value was higher in the robot condition for those metrics.

The overall expressivity results in Figure 9 can shed some additional light on the
e�ciency results of Figure 8. For instance, BrowRaise is an outlier among physical metrics
(Smile, BrowRaise, BrowFurrow, LipDepress) in e�ciency, yet the average recorded value
is second lowest. Similarly, the BrowFurrow metric has only average e�ciency, but has
the highest average recorded value. One possible explanation is that throughout the
interaction, children’s a↵ective mood tended towards modest surprise - leading to more
consistent non-zero values for BrowRaise, but fewer large values. By this explanation,
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Figure 9: Average emotional expression value, by condition. Error bars represent stan-
dard error of the mean.

the relative ine�ciency of the BrowFurrow metric could be attributed to the idea that
children did not generate BrowFurrow values as often, but when they did, they were
intense. The overall picture - spending most of the interaction in a state of modest,
pleasant engagement, punctuated by some severe moments of confusion or frustration,
matches the experimenter’s subjective assessment of the interaction.

3.8 Conclusion

Based on our analysis of the data, we can see that children produce higher emotional
expression values overall when interacting with a robot, with significant di↵erences in
three metrics - Smile, BrowRaise, and Engagement. It is not entirely surprising that
children interacting with a robot would exhibit the largest increases in these three met-
rics, previous research has suggested that children tend to smile and be highly engaged
around social robots. What is exciting about this research, however, is that we were able
to demonstrate this quantitatively and autonomously (i.e. without human judgement).
Now we turn our attention to the second research question: can we use these emotional
expression measurements to improve the performance of ITS assessment algorithms?

Summary: In this thesis, I describe work that seeks to answer two questions. The
first question is “Are children more emotionally expressive in an educational interac-
tion with an embodied social robot, compared to just a tablet?” In this chapter, I have
introduced our working definition of “emotional expression” (defined by the A↵dex sen-
sor), detailed the process for extracting meaningful information from large quantities of
a↵ective data, and confirmed that children who interacted with a robot during an educa-
tional task generated higher average emotional expression readings than children who did
not see the robot. These results reached statistical significance in three of six metrics –
Smile, BrowRaise, and Engagement – confirming previous research that the mere physical
presence of robots can significantly and positively alter the dynamics of an educational
interaction.
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Figure 10: A visualization of “Flow”

4 Can Emotional Signals Improve the Performance
of Computational Tutors?

In this chapter, I address the second research question: “Can we design algorithms and
models that incorporate students’ emotional expression data in order to more accurately
model student learners?” I describe work to construct models, trained from students’
a↵ective data, that are capable of inferring an individual student’s specific skill level
while simultaneously modeling a profile of a↵ective responses.

Students’ emotional reactions are highly diverse. Some students may display signs of
boredom because they find the material too easy, while others may show signs of boredom
out of frustration at a task beyond their ability. Some students may answer questions
quickly if they know all the answers, while others may diligently spend their time double-
checking. Some students who encounter a di�cult problem may choose to skip past it,
without wasting time. Others may dedicate a substantial amount of time to a challenging
problem, only to realize they lack the necessary skills to solve it. The work described in
this thesis represents a crucial step towards the development of models that can adapt
to these diverse learning styles in order to better provide personalized tutoring.

In this chapter, I first introduce some additional background material, followed by
a detailed description of what models were created and how they incorporate a↵ective
data. Then, I describe the evaluation procedure, present the results, and describe the
implications and conclusions. Last, I include a discussion of how this work fits into the
larger context of a↵ect-aware tutoring research.

4.1 Research Background and Modeling Approach

In this section, I introduce (1) the Knowledge Assessment problem for Intelligent Tutor-
ing Systems, (2) The Bayesian Knowledge Tracing algorithm (a widely-used approach
to solving knowledge assessment), and (3) the A↵ective BKT model (A↵-BKT), one of
the main contributions of this thesis, an augmentation of the BKT algorithm that in-
corporates information about the student’s facial expressions during problem-solving as
additional observation features to drive inference.

4.1.1 Knowledge Assessment

In Section 2, I discussed the concept of Flow - a state in which a student is highly engaged
in a task at the optimal challenge level. Flow is considered to be a key component of
education[Csikszentmihalyi (1997)]. One approach used by a↵ect-aware tutors is to monitor
whether a student is in Flow and, if not, attempt to guide him back to a Flow state.
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With this in mind, I now introduce the central computational problem of this chap-
ter: the Knowledge Assessment problem. The Knowledge Assessment problem is, in
plain language, “How can a teacher determine what a student does or does not know?”
The Knowledge Assessment problem is important for any tutor that wishes to keep her
students in a state of Flow. Consider Figure 10: if a student’s skill level is far above
the level required by the presented content, he may grow bored or feel unmotivated to
continue. If his skill level is far below the level required by the presented content, he may
feel overwhelmed or discouraged and will be less likely to try to master the new content.
Flow occupies the space in between the two extremes – where the student’s level of skill
is acceptably close to the level required by the content. One of the aims of a skilled
tutor is to keep her student in that space. Of course, a tutor does not have (direct)
control over her student’s skill level, but she can control the content. If the tutor knows
a student’s skill level within a certain degree of accuracy, she can select the appropriate
content to keep her student in a state of Flow. Hence, arriving at an accurate estimate
of a student’s skill level is a crucial step for all tutors that wish to keep their students
engaged and challenged. But how does one assess another’s knowledge?

Testing is one option, but there are many other approaches used by expert human
teachers - particularly in one-on-one tutoring scenarios. Some examples include direct
dialogue, variations on the Socratic method (e.g., asking the student to explain a concept
to the teacher), or observing the student’s emotions and workflow as he tries to solve a
problem. For computational tutors, Bayesian inference on graphical models is the most
popular approach. If the subject domain can be suitably modeled, algorithms for inference
can allow computational systems to estimate student skill levels. The most popular and
widely used of these methods is known as Bayesian Knowledge Tracing (BKT), a domain-
general algorithm for inferring skill mastery from student data. BKT models are widely
used in ITS research [Baker et al. (2008)]. For readers interested in a deeper understanding
of the history and complexities of Knowledge Assessment, VanLehn[VanLehn (2008)] pro-
vides an excellent summary of both the problems and promise of “continuous, embedded
assessment” in ITS research.

4.1.2 Bayesian Knowledge Tracing

Overview: Bayesian Knowledge Tracing (BKT) is perhaps the most widely used com-
putational model for assessing student knowledge. BKT is a general modeling approach
to solving the Knowledge Assessment problem that can be applied to any educational do-
main which can be decomposed into di↵erent component “skills”[Corbett and Anderson (1994)].
Under the BKT model, these di↵erent educational skills are encoded as nodes in a
Bayesian network. Each “skill node” in the network represents a student’s understanding
of a specific skill. The models used in BKT are a special case of Hidden Markov Models6,
in which each skill node is assumed to be in one of two hidden states, “skill known” or
“skill not-known”, and the observables are binary evaluations of answers to questions
requiring knowledge of a particular skill (i.e., was the student’s response to this question
Correct or Not Correct?).

Skill nodes are not directly observable - a tutor cannot see the actual state (whether
a student knows or does not know some skill). Instead, a BKT model maintains an

6Hidden Markov Models (HMMs) are a general class of Dynamic Bayesian Network models that have
been applied, with great success, to problems in speech technology, bioinformatics, and many other fields
of science and engineering
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Figure 11: Standard BKT Hidden Markov Model. From patterns of correct and incor-
rect responses, the model can infer the student’s hidden knowledge state

estimate, a probability distribution, that represents the probability that a student is in
each state (skill known or skill not-known). As an example, let us consider modeling the
mastery of the skill “solving quadratic equations.” Initially, we have no knowledge about
whether the student does or does not understand how to solve quadratic equations, so
one reasonable prior distribution might be {0.5, 0.5}, we believe there is a 50% chance
the student knows how to do so and a 50% chance he does not.

The power and flexibility of the BKT model is the notion of the Bayesian update.
In the face of new data (e.g., observing that a student answers three questions correctly
about solving quadratics), we would want to update our estimate of how likely it is that
the student has mastered the skill in question. Bayes’ Rule concretely formalizes what
the posterior distribution should be and how to calculate it. Each question/response pair
is presented/observed at a unique, discrete time point, and the hidden state can change
from ‘not-learned’ to ‘learned’ in between any two consecutive time points (corresponding
to the idea that a student can learn a skill at any time).

As noted above, a BKT model is a special case of a full Hidden Markov Model (HMM).
A two-state HMM with a single, binary observation is fully specified by 5 parameters,
described in Table 2. These parameters determine how the knowledge state estimate
changes in response to new data, and govern the relationship between hidden states and
between a hidden state and an observable. A single parameter (the prior) also specifies
the initial conditions of the model. From these 5 parameters, we can calculate precise,
numerical answers to a wide range of relevant questions, such as: “If a student solves
3 questions incorrectly, then solves 2 questions correctly, what is the probability he has
mastered the skill?”; “If a student has solved 3 questions correctly, what is the probability
he will answer the next question incorrectly?”; “If a student solves a problem incorrectly,
what is the probability it was due to a slip-up on his part, rather than a genuine lack of
mastery?”

Michael Jordan describes graphical models as “a marriage between probability theory
and graph theory.” The graphical representation allows for human-readable semantics,
while its probabilistic nature admits a wide ontology of phenomena that can be appro-
priately modeled. In the BKT model, a parameter can be interpreted as a number per
se, the fuel that drives the engine of inference in an HMM. But parameter values can also
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Table 2: BKT model parameters and interpretations

Notation Interpretation as HMM BKT Semantic Interpretation
Pr(Li

0

) For model i, the prior prob-
ability of being in state L at
time 0

The probability a student already
knows skill i prior to the start of tu-
toring.

Pr(¬Li
t+1

|Li
t) For model i, the probability

of transitioning to state ¬L
at time t+1 given the model
was in state L at time t

The probability a student forgets skill
i in between time steps. Sometimes
called the ‘forget’ parameter.

Pr(Li
t+1

|¬Li
t) For model i, the probability

of transitioning to state L at
time t + 1 given the model
was in state ¬L at time t

The probability a student learns skill
i in between time steps. Sometimes
called the ‘learning rate’ parameter.

Pr(Correct

i
t|¬Li

t) For model i, the proba-
bility of seeing observation
Correct at time t given the
model was in state ¬L at
time t

The probability a student answers
question t (which requires skill i) cor-
rectly, given that he does not know skill
i. Sometimes called the ‘guess’ param-
eter.

Pr(¬Correct

i
t|Li

t) For model i, the proba-
bility of seeing observation
Correct at time t given the
model was in state L at time
t

The probability a student answers
question t (which requires skill i) in-
correctly, given that he knows skill i.
Sometimes called the ‘slip’ parameter.

be interpreted as degrees of belief[Jaynes (2003)]. And if the HMM is a BKT model, these
degrees of belief correspond to specific factors relevant to the context of inferring whether
a student has mastered a skill, based on his pattern of correct or incorrect answers. The
notation of these 5 parameters, alongside their functional interpretation in the HMM and
semantic interpretation in the context of Knowledge Assessment, are given in Table 2.

Because BKT models are intended to provide semantically useful information, they
are typically subject to constraints on parameter values. Models with values that violate
these constraints are known as degenerate models, models in which the semantic interpre-
tations of parameter values no longer accurately reflect the world[van De Sande (2013)].
For example, one assumption typically enforced on the BKT model is that a correct an-
swer is more likely due to a proper application of the skill than a guess. Similarly, a
mistake should be more likely to be caused by not knowing a skill than a slip. Mathe-
matically, a model in which Pr(Correctt|¬Lt) > Pr(Correctt|Lt) is degenerate because it
implies that a correct answer is more likely to come from not knowing the related skill.
Similarly, a model with Pr(Correctt|Lt) < .5 and/or Pr(Correctt|¬Lt) > .5 is degenerate
because it implies that if a student knows a skill he is more likely to answer questions
related to that skill incorrectly than correctly. These assumptions may seem obvious,
but previous work has found that when all parameters are allowed to range freely during
model training, BKT models tend towards degeneracy[Baker et al. (2008)].

Limitations: The BKT model, while popular for its relatively straightforward anal-
ysis and ease of implementation, does su↵er from some limitations. Most significantly
for this thesis, the BKT model relies solely on a student’s pattern of correct/incorrect
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answers to drive inference, while ignoring the vast ocean of relevant contextual informa-
tion that good human tutors draw on to assess students, such as a student’s a↵ective
expressions. The A↵ective BKT model described in the following section (A↵-BKT) is
an attempt to improve the BKT model, by augmenting it to draw inference from a↵ective
as well as knowledge-based features.

BKT’s emphasis on information from correct/incorrect answers has broader implica-
tions for the design of ITSs as well. Because correct/incorrect answers are a relatively
weak channel of inference (compared to a system that uses information from many multi-
modal sources), in order to arrive at an accurate estimate of a student’s knowledge, such
models typically require large datasets. In turn, this requirement steers the interaction
design of BKT-based ITSs towards frequent prompting of the student (culminating, in ex-
treme case, in ‘digital workbook’ style tutors), rather than the interactive and immersive
styles of tutoring that characterize the best human teachers. Additionally, BKT skills
are most commonly treated independently, which limits the kind of curricula that can be
successfully modeled by BKT. There are some examples of using implementing BKT with
hierarchical or interdependent skill models[Ferguson et al. (2006)] in which demonstrating
knowledge of one skill influences the probability of mastery of other skills that may not be
directly relevant. However, this is still an area under active research, as more advanced
model structures greatly increases the complexity of training and can require much more
data. In this thesis, both BKT and A↵-BKT models treat each skill independently.

In spite of BKT’s limitations, it is still one of the most popular methods for knowledge
assessment and forms the basis of a substantial body of research. While the A↵-BKT
model does not address all of the limitations of BKT, it representsan initial advance. The
work presented here serves as proof-of-concept that a↵ective information can be reliably
detected and made useful, and that models that take advantage of such information can
outperform standard techniques, all while keeping the tutoring interactive and engaging.

4.1.3 A↵ective-BKT

The A↵ective-BKT (A↵-BKT) model forms one of the central contributions of this thesis,
presented for the first time. It is a BKT model with additional observation nodes repre-
senting features of the student’s facial expression during an educational interaction with
a social robot. That is, the A↵-BKT model is a Hidden Markov Model with multiple
observations per time step, whereas the standard BKT model has only one. In addi-
tion to the observable node corresponding to a correct/incorrect response, the A↵-BKT
model includes observable nodes that correspond to a↵ective features, determined by an-
alyzing a participant’s facial expression. The additional observable nodes are structured
identically to the standard BKT observation of correct/incorrect answers (see Fig. 11),
therefore each additional node requires just two additional parameters per skill model.
These additional parameters and their semantic interpretations are given in Table 3.

As noted in Section 2, much of the work on a↵ect and machine learning models in
the ITS literature focuses on trying to infer a↵ect. Typically, once a↵ective states are
detected or identified, simple behavioral rules are triggered - the a↵ective state is not
used to improve or train any internal model. There is, however, one notable exception:
a recent project by Xu et al. uses EEG input as an input to a Knowledge Tracing model
[Xu et al. (2014)]. However, EEG signals are extremely noisy, subject to a large degree
of individual variance, and lack a clear semantics. Thus, while the models incorporat-
ing EEG data did exhibit slightly improved performance, the utility of such models is
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Table 3: Additional parameters used in the A↵-BKT model and their interpretations

Additional A↵-BKT
Parameters

Interpretation as HMM Semantic Interpretation

Pr(Smile

i
t|Li

t) For model i, the probability
of seeing observation Smile

at time t given the model
was in state L at time t

The probability a student
smiles while answering
question t (which requires
skill i), given that he knows
skill i.

Pr(Smile

i
t|¬Li

t) For model i, the probability
of seeing observation Smile

at time t given the model
was in state ¬L at time t

The probability a student
smiles while answering
question t (which requires
skill i), given that he does
not knows skill i.

Pr(Engage

i
t|Li

t) For model i, the proba-
bility of seeing observation
Engage at time t given the
model was in state L at time
t

The probability a student
appears engaged while an-
swering question t (which
requires skill i), given that
he knows skill i.

Pr(Engage

i
t|¬Li

t) For model i, the proba-
bility of seeing observation
Engage at time t given the
model was in state ¬L at
time t

The probability a student
appears engaged while an-
swering question t (which
requires skill i), given that
he does not know skill i.

P(Lit)

CorrecttSmilet

P(Lit+1) P(Lit+2)

... ...

Engagedt Correctt+1Smilet+1 Engagedt+1 Correctt+2Smilet+2 Engagedt+2

Figure 12: The A↵ective BKT model, which incorporates a↵ective signals into knowl-
edge state inference.

limited, as they do not readily lend themselves to autonomous model construction nor in-
terpretation by researchers or educational experts. In contrast, the A↵ective-BKT models
described in this thesis have a clear semantics and the resultant, trained parameters can
yield intriguing, data-driven insights into the intersection between emotion and learning.

Summary: In this section, I have introduced the Knowledge Assessment problem
– the central computational challenge of this thesis – and its motivations. I have also
described the Bayesian Knowledge Tracing model, a special case of a Hidden Markov
Model that supports inference to solve the Knowledge Assessment problem. Finally, I
introduced a novel extension of the BKT model: A↵-BKT, which incorporates estimates
of a↵ective states, derived from facial expressions, into its inference. Next, I describe
the fundamental processes by which I implemented and evaluated these models, in the
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context of assessing students’ reading skills. First, I cover how to computationally model
a complex task like reading, followed by detailing the structural implementation of each
model, how the training data was obtained, how the parameters for each model were
trained from the data, and how the models were evaluated.

4.2 Modeling the reading process as discrete alphabetic princi-
ple skills

In this section I discuss how I chose to represent and assess students’ mastery of a
complex educational task, such as reading, within BKT and A↵-BKT models. Reading
is an extraordinarily complicated process, yet despite its incredible complexity, almost
all adults living in developed countries are literate. Learning to read is an acquired skill
that requires years of practice and mastery of many foundational sub-skills before fluent
“reading” occurs. One particular class of skills is known as the “alphabetic principle”
skills. The alphabetic principle, in its simplest formulation, is the recognition that written
letters and their combinations correspond to particular spoken sounds in specific and
predictable ways. Alphabetic principle skills are the various rules and mappings that
connect those written combinations with the more familiar spoken sounds. The alphabetic
principle and its associated skills are fundamental precursors to developing full literacy,
and understanding how to best teach those skills is an area of significant research (see
[Byrne and Fielding-Barnsley (1989), Liberman et al. (1989), Byrne (1998)], inter alia for an
overview).

In this thesis, I model the complex act of reading a word by constructing and tracking
three di↵erent BKT models, corresponding to three alphabetic principle skills: correctly
recognizing the first grapheme7 of a word, correctly identifying a word of (roughly) the
same written length as a spoken word, and correctly recognizing the final grapheme of a
word.

The first skill, denoted First-Letter, requires the child to hear a requested word,
decompose its sounds into phonemes, map the phonemes into graphemes, and then select
a word that features those graphemes at the beginning of the word. Roughly, it corre-
sponds to the first step of the oft-repeated advice to a young reader - “Sound it out!”
Homophonous graphemes (e.g., ‘H’ and ‘Wh’) were considered equivalent, as resolving
this type of collision in a phoneme-grapheme mapping is considered a more advanced
skill.

The second skill, denoted Length, requires the child to understand that the length
of a written word corresponds to the number of syllables in its spoken instantiation. For
this skill, I considered a student to have correctly demonstrated this skill if they selected
a word with a length within 1 letter of the requested word’s length.

The third skill, denoted Last-Letter, requires the child to go through the same
process as First-Letter, only applied to the end of the word. This poses slightly more
of a challenge, as it is natural to attempt to read a word from its start, thus I expect
Last-Letter may depend somewhat on First-Letter as a precursor.

Lastly, I did model the complete, correct reading of a word. This skill, denoted
Exact-Correct, requires the child to fully and correctly identify the requested word,
representing the complete ability to read the requested word. Because the requested

7a grapheme fulfills roughly the same function in writing as a phoneme does in speech: it is the
smallest unit used to describe writing from a linguistic perspective. Examples include ‘a’, ‘ch’, ‘f ’, ‘sh’,

‘d’, etc.
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word was spoken aloud, homophones were considered correct (e.g. if the robot asked for
the word ‘to’, and both ‘to’ and ‘too’ were among the possible answers, either would be
considered ‘exactly correct’).

There are some limitations and tradeo↵s to these modeling choices. As noted above,
there are many fundamental sub-skills required for a complex act such as reading. Even
within the subset of alphabetic principle skills, there are far more than I could cover in
the scope of this thesis. I chose to analyze the four skills discussed above because they
are well-suited to the task from which the dataset was derived (see Sec 3.2), relatively
easy to detect computationally (compared to, e.g., analysis of a child’s pronunciation),
and because they are developmentally appropriate for the age group of the population
[of Oregon Center for Teaching and Learning (2015)]. Lastly, though the alphabetic princi-
ple skills are clearly interrelated, BKT skills are most commonly treated independently.
In line with the stated research focus of this chapter (examining whether a↵ective fea-
tures improve the model), in this thesis both BKT and A↵-BKT models assume that
each alphabetic principle skill is learned independently of the others.

4.3 Building the BKT and A↵-BKT Skill Models

I constructed basic BKT models for each skill using Kevin Murphy’s Bayes Net Toolkit
[Murphy et al. (2001)], a freely available, open-source library that provides support for
construction of and inference on a wide variety of graphical models. Each BKT model
has one hidden node – with two possible states, (Skill Learned or Skill Not-Learned)
– and one observation node – with two possible values (Question Correct or Question
Incorrect) – per time step. Each BKT model has the structure depicted in Figure 11 and
is completed by specifying the parameters listed in Table 2. I will describe how these
parameters are ultimately learned from data in Section 4.4.

As with the BKT models, I constructed an A↵-BKT model for each skill using Kevin
Murphy’s Bayes Net Toolkit (BNT), implemented in Matlab. Each A↵-BKT model
includes two additional observable nodes per time step – Smilet and Engagedt. In the
next section, I discuss how we derived the correctness and emotional training data and
how that data was used to learn parameters for each skill model.

4.4 Training the BKT and A↵-BKT Skill Models

4.4.1 Deriving Session Skill-Correctness Data

In Section 3.3, I described the concept of a session - a window of time ranging from
just before the robot asks for a word to be read to just after the child gives an answer.
As described in Section 3.3, the robot’s requested word and the child’s response were
recorded in ROSbags during the interaction.

To determine whether each session represented a correct or incorrect application of
a skill, I wrote ‘correctness’ string matching functions for each of the four alphabetic
principle skills. Each function compared the requested word to the answered word and
computed whether the chosen word represented a correct application of the relevant skill
to the requested word. For example, answering ‘prince’ when the requested word was
‘princess’ is a correct application of First-Letter, but not of Exact-Correct,
Length, or Last-Letter. I then applied these functions to each of the requested
and answered words in each session. The end result was, for each session, four boolean
results (Correct or Incorrect) representing whether or not the child’s answer represented
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a correct demonstration of each skill (First-Letter, Length, Last-Letter, Exact-
Correct).

4.4.2 Deriving Session A↵ect Data

In Section 3.4, I described the process for obtaining a↵ective data from each session. For
this analysis, I started with the set of median-smoothed data points (green dots in Figure
5) for each session. For each session, I calculated the mean value8 of the Engage and
Smile metrics, both of which have been used as features in prior a↵ective-aware tutoring
work. Each session was then labeled as Smile/No Smile and Enaged/Not Engaged via
a mean value threshold of 30. If the average value of Smile was over 30 in a session,
then it seems reasonable to assume that the child did, in fact, smile during that session
and it is labeled as such. Similarly, if the average Engagement value was above 30 for
the session, the child was probably fairly engaged during the session. The end result
of this process was, for each session, two sets of boolean results (Smile/No Smile and
Engaged/Not Engaged). Note that, unlike the correctness data, the a↵ective data does
not change with the skill being modeled. Next, I discuss how the a↵ective and correctness
data were used to train and evaluate parameter sets for the A↵-BKT and BKT models.

4.4.3 Expectation Maximization: learning model parameters from observed
data

The parameter values for each skill model – 4 BKT and 4 A↵-BKT, one each per skill
– were trained via Expectation Maximization (EM) from the training data. Expecta-
tion Maximization (EM) is a general technique for estimating a set of parameters from
data. Under the assumption that some set of parameters, ✓, generated a set of data,
D, Expectation Maximization tries to find the Maximum Likelihood Estimate (MLE) of
the parameters, given the data: max✓Pr(✓|D). For the BKT models, the data used to
train each skill-model is the set of skill-correctness data (described in Sec. 4.4.1) for the
corresponding skill. For the AKT skill models, the training data is the skill-correctness
data plus the a↵ective data (described in Sec. 4.4.2).

EM works by alternating steps. In the ‘Expectation’ step, the algorithm computes a
function, Q(✓), that gives the expected value of the Log Likelihood function, with respect
to the current parameter estimate, ✓t. In the ‘Maximization’ step, the algorithm then
finds a new set of parameters, ✓t+1

that maximizes the expected Log Likelihood. This
new set of parameters then becomes the parameter estimate for the ‘Expectation’ step
of the following iteration. Mathematically, this can be expressed as: ✓t+1

= max✓Q(✓).
The process repeats until the parameter values converge (i.e., the di↵erence in expected
log-likelihood values between EM iterations falls below a certain threshold. That is, EM
converges at time step t when |Qt�1

(✓t�1

)�Qt(✓t)| < ✏). In this thesis, we used ✏ = 10�5.
All models converged in <15 iterations. Each BKT model took approximately 20 minutes
to train; each A↵-BKT model took approximately 40 minutes to train.

8Whereas in Section 3, I computed the average metric value over a participant’s complete interaction,
for this analysis, I computed the average metric value for each session. Each participant experienced 29
sessions, on average.
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Parameter Initial
Value

Justification for Choice

Pr(Li
0

) 0.5 Initially, we have no knowledge of the child’s read-
ing ability, hence any child is equally likely to know
or not know a given skill.

Pr(¬Li
t+1

|Li
t) 0.0 BKT is most commonly used to model short

interactions and assumes that a child will
not ‘forget’ a skill, once it is mastered (e.g.,
[Ferguson et al. (2006)])

Pr(Li
t+1

|¬Li
t) 0.2 There is a low probability that a child will learn a

skill at any given time, but we expect some chil-
dren to learn over the course of the interaction.

Pr(Correct

i
t|¬Li

t) .25 We chose .25 as the initial guess rate. Though the
actual chance of answering correctly varies by both
skill and session, it ranged from 11% to 33%.

Pr(¬Correct

i
t|Li

t) .25 We chose an initial slip rate equivalent to the initial
guess rate.

Table 4: Initial parameter values used in training via Expectation Maximization

4.4.4 Initial Conditions

EM is a deterministic algorithm, and therefore performance is somewhat sensitive to
initial conditions. Table 4 shows the parameters of the model, their initial values, and
the justification for setting those values.

4.5 Bayesian Model Selection

The main research question this chapter addresses is whether we can improve BKT models
by augmenting them to incorporate a↵ective information. Thus, we must identify some
way of comparing models. As discussed in Section 4.1.1, Knowledge State Assessment is
di�cult precisely because a student’s actual knowledge state is not directly observable.
Because we have no “ground-truth” data, it is infeasible to use traditional supervised
learning benchmarks (e.g., precision + recall metrics or F-score), to evaluate the A↵-
BKT and BKT models. Rather, I evaluated the two models from the perspective of
Bayesian Model Selection.

Bayesian Model Selection is the general problem of determining which of several pos-
sible models should be preferred, given some data. Approaches to model selection vary
based on the space of possible models and datasets under consideration, but generally
revolve around calculating the probabilities of di↵erent models, given the observed data.

Equation 3 shows this equivalence mathematically. On the left hand side, we have
the quantity we wish to calculate: the posterior probability of a model, ✓, given some
observed data, D. This quantity is proportional to the prior probability of ✓ (i.e, a
priori, what do we think is the probability that theta is the correct model?) multiplied
by the probability of the data occurring if ✓ determined the data generation process. This
second quantity, Pr(D|✓), is also called the likelihood of the model, given the data.

In Section 4.4.3, I described how I used the Expectation Maximization algorithm to
learn model parameters for the BKT and A↵-BKT models. These parameters approxi-
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Pr(✓|D) / Pr(✓)⇥ Pr(D|✓) (3)

Equation 3: Bayes’ Rule. The posterior probability of a model, after seeing some
data, is proportional to the prior probability of the model multiplied by the probability
of the observed data occurring under the model.

L(✓|D) = Pr(D|✓) (4)

Equation 4: The Likelihood of a model, given some data, is equal to the Probability
of the observed data occurring under the model.

mate the maximum likelihood model for their respective training data. Put another way,
the EM algorithm tries to find a set of parameters that maximizes the probability of the
training data occurring. These terms – likelihood of a model, given data and probability
of data, under a model – are equivalent (see Equation 4), and are used interchangeably,
whenever it makes more sense to refer to one or the other.

Based on equations 3 and 4, assuming equal priors for both models, we should prefer
the model with the highest likelihood - i.e., the model under which the observed data
has the highest probability of occurring. Simple likelihood-based metrics for evaluating a
model, such as the Bayesian Information Criterion (BIC) or Akaike Information Criterion
(AIC) metrics include a penalty term to account for additional parameters, hence they
are appropriate for models with di↵erent structures. The BIC and AIC have been used
to compare Knowledge Assessment models in which the number of parameters di↵er
[Ferguson et al. (2006)].

Unfortunately, the models we wish to compare di↵er not only in their structure but
also in the data they model and are trained from, and therefore straightforward likelihood
metric comparison is not appropriate for this case. Informally, this is because the BKT
training data is composed of a single boolean observation per time step, representing
whether the student gave a correct or incorrect answer during that session. In contrast,
the A↵-BKT training data is composed of three boolean observations per time step.
Because there are more possible datasets in a 3-observation model, there is, on average,
less probability mass to be assigned to each possible dataset. The probability of the
larger dataset, under one model, is not fairly comparable to the probability of a smaller
dataset, under another model, hence comparing the likelihoods of those two models (given
di↵erent size datasets) is not a fair comparison either.
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Figure 13: A single fold of the full training and evaluation pipeline for BKT skill models (top) and A↵-BKT skills models

(bottom). The BKT models are trained from the skill-correctness session data described in Section 4.4.1, depicted as yellow

circles. The A↵-BKT models are trained from both the skill-correctness session data described in Section 4.4.1 and the

a↵ective session data, depicted as red circles. Both models were trained via the EM algorithm, with a single participant’s

data “held-out” for testing, resulting in a set of learned model parameters. The BKT model is evaluated on the ‘held-out’

participant’s skill-correctness data (depicted as green circles), producing a single ‘likelihood estimate’ data point (shown

here as a large blue circle). The A↵-BKT model undergoes one additional step, in which a subset of the trained A↵-BKT

model parameters are used to construct a new model,

ˆ✓aff , that is structurally identical to the BKT model. Then,

ˆ✓aff
is evaluated in the same way as the BKT model: using the same held-out participant’s skill-correctness data to produce

a ‘likelihood estimate’ data point. This process is repeated once for each participant, thus the final result is a set of 38

‘likelihood estimate’ data points for each (A↵-BKT and BKT) skill model.
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4.6 Evaluation Methodology

Having discussed the central issues and relevant mathematics of model evaluation in the
previous section, I now describe the actual procedures used to evaluate the models in this
thesis. At this point, I strongly encourage the reader to examine Figure 13, which depicts
the model training and evaluation process graphically (with some mathematical notation
as well), and which I will frequently reference for clarity. First, however, I introduce the
some mathematical notation for reference in the following discussion.

4.6.1 Model evaluation notation

In this section I introduce the relevant mathematical notation for understanding the
model training and evaluation procedure.

Let Di
bkt denote the set of training data for a traditional BKT model of skill i (only

the relevant skill-correctness data from all sessions, depicted as yellow circles in Fig. 13)
and let Di

aff denote the set of training data for an A↵-BKT model of skill i (the a↵ective
data plus the relevant skill-correctness data from all sessions, depicted as red circles in
Fig. 13). These two sets compose the full training sets for the BKT and A↵-BKT models
throughout this thesis.

Then, let ✓bkt (informally referred to as the ‘BKT model’ and depicted graphically
at the top-center of Fig. 13) denote the set of BKT parameters trained from D

i
bkt, and

let ✓aff denote the set of A↵-BKT parameters (informally referred to as the ‘A↵-BKT
model’ and depicted graphically at the bottom-center of Fig. 13) trained from D

i
aff .

In order to compare the likelihoods of the two models, I introduce a new model,
called A↵-BKT-Subset and denoted ✓̂aff . This model is formed from the subset of the
✓aff parameters listed in Table 2 (i.e., the BKT parameter subset of the A↵-BKT model.)
Notably, these parameters are trained from D

i
aff , that is, they reflect the additional infor-

mation of the a↵ective training data. But A↵-BKT-Subset also has the same structure as
✓bkt, the BKT skill model. Thus, A↵-BKT-Subset provides a compromise for evaluation:
the model’s parameters are trained from both a↵ective and skill-correctness data, but can
be fairly evaluated on the same data as ✓bkt, the skill-correctness data. ✓̂aff is depicted
graphically as the red nodes of the model in the bottom right section of Fig. 13.

4.6.2 Model evaluation procedure

Most of the model selection techniques discussed above are used to compare models with
di↵erent structures, trained on the same data. We rejected those techniques because
✓aff and ✓bkt di↵er both in structure and training data. By introducing ✓̂aff (the A↵-
BKT-Subset model), which has the same structure as ✓bkt, though trained from di↵erent
data, we have reduced the di�culty of model comparison to a more tractable situation.
Comparing ✓̂aff and ✓bkt enables us to conduct a more straightforward analysis of the
models’ respective likelihoods: Leave-one-out cross-validation (LOOCV), a process in
which all but one of the participants’ data is used to train the model, then the likelihood
of each trained model is evaluated, with respect to the held-out participant’s data.

LOOCV occurs in two phases: during the “training phase”, a single participant’s data
is held-out and the two models are trained according to the procedure described in Sec.
4.4 (Expectation Maximization). Then, during the “testing phase”, the probability of

38



the held-out data, under the trained model is calculated (separately, for each model) as
an estimate of the model’s overall performance. The probability of held-out data is often
used a measure of model ‘fit’ – that is, how well the model explains the observed data.
Models with higher fit are, naturally, preferred.

The process described above (hold out a participant, train model, test on held-out
participant’s data) is known as a fold and results in a single data point per model,
representing the model’s ‘fit’ to the test data (depicted as a large blue circle in the
center-right and bottom-right of Fig. 13). During a complete LOOCV evaluation, this
process is then repeated for each of the participants, so that at the end of a complete
LOOCV analysis with n participants, n di↵erent training sessions have occurred (each
di↵ering slightly, due to slight variation in training data), and n di↵erent test data points
(the probabilities of all n di↵erent held-out participant’s data or, equivalently, n di↵erent
model likelihoods) have been collected per model.

Mathematically speaking, during each fold, we hold out a single participant’s skill-
correctness data (denoted D

i,k
test, the test data representing skill i, during fold k), shown

as green circles in Fig. 13. Then each model is trained on the data from the remaining
participants: ✓aff is trained on the a↵ective and skill-correctness data from the training
participants, Di

aff – Di,k
test (shown as small red circles in Fig. 13), while ✓bkt is trained on

just the skill-correctness data from the training participants Di
bkt – Di,k

test (shown as yellow
circles in Fig. 13). During the test phase, we construct the A↵-BKT-Subset model,
✓̂aff , by removing the extra nodes and parameters from ✓aff . Finally, we compute the
probabilities of the test data under each model (or, equivalently, the likelihood of each
model given the data): Pr(Di,k

test|✓̂aff ) and Pr(Di,k
test|✓bkt) – shown as a large blue circle in

Fig 13.
The key here is that both models are being evaluated on identical test data! Because

these model likelihood data points9 are derived from structurally identical models (✓̂aff
and ✓bkt) under the same data, after each fold, the two model likelihoods can be directly
compared. The model with the higher likelihood better ‘fits’ the data, and is more likely
to be able to generalize to new data.

Data from 38 participants was used. Thus, we repeated the ‘fold’ process 38 times,
holding-out one participant each fold, and computed 38 model likelihoods per skill model.
Figure 13 shows the complete evaluation pipeline - from training data, to model construc-
tion, to model evaluation. Full results by skill and model type are presented in Figures
14 and 15. Aggregate statistics for each skill and model type are presented in Table 5.

4.7 Results

Figure 14 show the complete evaluation data: the log-likelihood of each skill model,
evaluated on every participant. For three of the four skills (Exact-Correct, First-
Letter, and Last-Letter) the A↵-BKT-Subset model error is lower for nearly all
participant test data. For Length, the A↵-BKT-Subset model error is generally lower,
but there were some cases in which the BKT model had better fit. Overall, however,
it is clear that the A↵-BKT-Subset model fits the data much better than the BKT
model. Table 5 reinforces these results: every A↵-BKT-Subset skill model has higher
mean likelihood than the traditional BKT model for the same skill. Furthermore, every

9for practical reasons, computed as and often presented as, log-likelihoods
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First-Letter Length Last-Letter

Figure 14: Probability of Test Data under BKT and A↵-BKT models, color-coded by
skill. Within each skill, data points to the left represent the log-likelihood (model fit) of
the BKT model evaluated on one test participant’s data. Each point is connected to the
log-likelihood of the A↵-BKT-Subset model evaluated on the same participant’s data.
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Figure 15: Mean error estimates of BKT and A↵-BKT models by skill. Significance
was calculated via a one-sample T-test on the di↵erence between model error estimates,
evaluated on the same test participant data: |Pr(Di,k

test| ✓̂aff ) – Pr(Di,k
test|✓bkt)|

A↵-BKT-Subset model has a higher maximum and minimum likelihood than the BKT
model for the same skill.

Figure 15 shows the statistical significance of these results, presented as a decrease in
model error, rather than an increase in ‘fit’. Following [Yudelson et al. (2013)], we use the
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Figure 16: Histograms showing the distribution of error di↵erence between BKT and
A↵-BKT models on the same test data. Error distributions for 3 of 4 skills were normally
distributed.

Skill Model Mean Log-
Likelihood

Std Deviation Max Min

Exact-

Correct

A-BKT -14.923 9.01 -2.2964 -32.545

Exact-

Correct

BKT -19.79 10.386 -10.304 -39.979

First-Letter A-BKT -13.652 10.091 -1.4883 -32.343
First-Letter BKT -17.090 10.386 -7.3040 -44.777
Length A-BKT -13.6160 9.596 -1.62 -38.7923
Length BKT -14.5992 9.513 -5.160 -39.094
Last-Letter A-BKT -14.644 9.493 -2.022 -33.753
Last-Letter BKT -18.222 9.98 -8.202 -41.915

Table 5: T-test results by metric, comparing di↵erences in mean interaction value across
Robot and Tablet conditions

negative log-likelihood as an error function for model evaluation (for ease of presentation).
This definition of error follows naturally from the interpretation of model likelihood as a
measure of ‘fit’ (see Sec. 4.6.2). Figure 15 shows the mean error (that is, average negative
log-likelihood) of each skill model.

Because the BKT and A↵-BKT-Subset model errors are derived from the same set
of test data, I compared the di↵erence between the model errors, for each piece of test
data, in order to determine if the BKT model error was significantly higher than the
A↵-BKT-Subset model error. Figure 16 shows histograms of the error di↵erence by skill.
The majority of each distribution lies above 0 (indicating that the BKT model has higher
error overall), though parts of the each distribution lie below 0, just as the BKT model
may outperform the A↵-BKT model on some individual pieces of test data.

The distribution of error di↵erence for Exact-Correct, First-Letter, and Last-

Letter appear normal, while the the distribution of error di↵erences for Length does
not. This was confirmed by a Shapiro-Wilk test on each distribution. To calculate the
statistical significance of error di↵erences (shown in Fig. 14), I conducted a one-sample
T-test on the Exact-Correct, First-Letter, and Last-Lettererror di↵erences,
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and a one-sample Wilcoxon signed-rank test on the Length error di↵erence. For every
skill, the BKT model had significantly higher mean error (p <.0001).

These results answer our second research question – “Can we build models that use
a↵ective data to improve the performance of traditional Knowledge Assessment models?”
– a�rmatively. Interestingly, we were able to reach this conclusion through comparisons
between the BKT model and the A↵-BKT-Subset model, a model that is structurally
identical to the traditional BKT model and hence does not explicitly model a↵ect. Rather,
the influence of the a↵ective data manifests itself in the trained values of the traditional
BKT parameters. In other words, by including the additional parameters, structure, and
data to support a↵ect-awareness, we found that the A↵-BKT model learns better param-
eters even for parts of the model that have nothing to do with a↵ect ! Without further
study, the underlying computational reasons for this cannot be conclusively determined.
However, I hypothesize that the a↵ective data helps “explain away” some of the observed
variance in Correct/Incorrect answers. Essentially, the BKT model tries to fit all five of
its parameters to explain the full variance in the skill-correctness data. However, mod-
ern theories of a↵ect and learning suggest that the two are deeply related, hence some
variance in the skill-correctness data can likely be explained by a↵ective factors. The
additional a↵ective parameters of the A↵-BKT model can adjust to the variance due
to a↵ective variables (e.g., distraction), leaving the A↵-BKT-Subset parameters free to
better fit to the variance due to knowledge-based factors (e.g., genuine skill mastery).

5 Contributions and Conclusions

In this thesis we have answered both research questions from Chapter 1 a�rmatively.
We have shown that children are more emotionally expressive when engaged in
an interactive educational task with a social robot than when engaged in
an identical task with a tablet alone. Furthermore, we have demonstrated that
these kinds of emotional expressions can be successfully integrated into an inferential
model for assessing children’s knowledge states. These a↵ective models outperform
traditional approaches to the Knowledge Assessment problem, demonstrating
the utility of sensing a↵ective data and constructing tutoring models to make
use that data. Together, these results suggest that physical, social robots may be a
more appropriate medium for developing a↵ect-aware computational tutors. Previous
research has shown that the mere physical presence of social robots can alter important
interaction dynamics: this thesis adds to that body of work by identifying a particularly
important aspect of that phenomenon (children’s increased emotional expressivity) and
showing how this shift in interaction style can lead to improved model performance.

Research agencies are beginning to recognize the potential of a↵ect-aware robotic tu-
tors: the research described in this thesis is supported by a National Science Foundation
“Expedition in Computing” grant, to develop Socially Assistive Robots, robots capable
of improving children’s health, education, and well-being through social interaction. The
European Union recently launched the EMOTE project: a multi-year, multi-institution
e↵ort under the FP-7 program to develop “embodied perceptive tutors for empathy-based
learning.” Clearly, researchers on a global scale feel the time is ripe to investigate the
potential of a↵ect-aware robot tutors to significantly improve the scope and quality of
computational tutoring systems. This thesis elucidates some of the potential improve-
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ments physical robots have over software-only systems, by demonstrating social robots’
ability to induce higher degrees of emotional expressivity and adapting and improving
traditional ITS inference techniques to the novel paradigm of human-robot tutoring in-
teractions.

6 Future Work

This thesis describes work that supports the idea that physically embodied, a↵ect-aware,
social robot tutors have the potential to provide more e↵ective, empathic, and scalable
educational experiences. We have shown that even simple model augmentations that in-
tegrate a↵ect into inference can improve the performance of modern methods. Naturally,
however, this is only the beginning, and there remain many exciting research challenges
we hope to address, based on the results of this thesis. In the future, we could determine
which a↵ective features are most helpful in improving model fit, by repeating the analy-
sis of Section 4.3 with di↵erent combinations of a↵ective features. We could also explore
more complex a↵ective models. In this thesis, a↵ective variables were treated simply
as new, independent observations, but future work could explore hierarchical models of
a↵ect. In addition, the BKT and A↵-BKT models were trained from data gathered from
the entire population of participants. Future work could explore developing personal-
ized models of student a↵ect, and perhaps could cluster students as having similar or
di↵erent emotional learning profiles. Finally, the work described in this thesis is purely
inferential. That is, it demonstrates that robot tutors can use a↵ective information to
more accurately model the state of the world. It does not, however, address the problem
of action: given the state of the world, what actions should the tutor take to best help
the child? Developing action policies for educational interaction is a challenging multi-
objective problem. For instance, an educational tutor may have to balance short-term
goals (such as keeping the student engaged or interested) and longer-term goals (such
as mastery of educational material) as well as trade-o↵s between computational goals
(such as gathering information that could improve its internal model of the student) and
learning-based objectives (introducing content that the model is relatively sure will help
the student). Action models in education are an active topic of research, though little
work has examined how a↵ective information could be used to shape these policies.

Researchers in psychology and cognitive science are coming to understand that a↵ect,
far from being an ‘irrational’ influence, is actually crucial to everyday decision making
and judgements. This understand is beginning to influence the design of agents and
algorithms that model or simulate intelligent behavior and decision making. While a
relatively recent e↵ort, many researchers are now pursuing e↵orts to integrate a↵ect into
intelligent systems, and, encouraged by the results of this thesis, we believe that this
research will ultimately lead to more e↵ective, intelligent, and enjoyable interactions
with technology.

43



References

I. Arroyo, C. Beal, T. Murray, R. Walles, and B. P. Woolf. Web-based intelligent mul-
timedia tutoring for high stakes achievement tests. In Intelligent Tutoring Systems,
pages 468–477. Springer, 2004.

H. Aviezer, Y. Trope, and A. Todorov. Body cues, not facial expressions, discriminate
between intense positive and negative emotions. Science, 338(6111):1225–1229, 2012.

W. A. Bainbridge, J. W. Hart, E. S. Kim, and B. Scassellati. The benefits of interactions
with physically present robots over video-displayed agents. International Journal of
Social Robotics, 3(1):41–52, 2011.

R. S. Baker, A. T. Corbett, and V. Aleven. More accurate student modeling through
contextual estimation of slip and guess probabilities in bayesian knowledge tracing. In
Intelligent Tutoring Systems, pages 406–415. Springer, 2008.

T. Belpaeme, P. E. Baxter, R. Read, R. Wood, H. Cuayáhuitl, B. Kiefer, S. Racioppa,
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